Skip to main content
Log in

Electrical Conductivity of V2O5–TeO2–Sb Glasses at Low Temperatures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Semiconducting glasses of the type 40TeO2–(60 − x) V2O5xSb were prepared by rapid melt quenching and their dc electrical conductivity was measured in the temperature range 180–296 K. For these glassy samples, the dc electrical conductivity ranged from 2.26 × 10−7  S cm−1 to 1.11 × 10−5 S cm−1 at 296 K, indicating the conductivity is enhanced by increasing the V2O5 content. These experimental results could be explained on the basis of different mechanisms (based on polaron-hopping theory) in the different temperature regions. At temperatures above Θ D/2 (where Θ D is the Debye temperature), the non-adiabatic small polaron hopping (NASPH) model is consistent with the data, whereas at temperatures below Θ D/2, a T −1/4 dependence of the conductivity indicative of the variable range hopping (VRH) mechanism is dominant. For all these glasses crossover from SPH to VRH conduction was observed at a characteristic temperature T R ≤ Θ D/2. In this study, the hopping carrier density and carrier mobility were determined at different temperatures. N (E F), the density of states at (or near) the Fermi level, was also determined from the Mott variables; the results were dependent on V2O5 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kjeldsen, Y. Yue, C.B. Bragatto, and A.C.M. Rodrigues, J.␣Non-Cryst. Solids 378, 196 (2013).

    Article  Google Scholar 

  2. M. Pal, K. Hirota, Y. Tsujigami, and H. Sakata, J. Phys. D Appl. Phys. 34, 459 (2001).

    Article  Google Scholar 

  3. B. Santic, A. Mogus-Milankovic, and D.E. Day, J. Non-Cryst. Solids 296, 65 (2001).

    Article  Google Scholar 

  4. B.I. Sharma and A. Srinvasan, Phys. Stat. Sol. (b) 229, 1405 (2002).

    Article  Google Scholar 

  5. N. Lebrun, M. Levy, and J.L. Souquet, Solid State Ionics 40–41, 718 (1990).

    Article  Google Scholar 

  6. P.S. Tarsikka and B. Singh, J. Non-Cryst. Solids 124, 221 (1990).

    Article  Google Scholar 

  7. M. Pal, Y. Tsujigami, A. Yoshikado, and H. Sakata, Phys. Stat. Sol. (a) 182, 727 (2000).

    Article  Google Scholar 

  8. H. Sakata, M. Amano, and T. Yagi, J. Non-Cryst. Solids 194, 198 (1996).

    Article  Google Scholar 

  9. H.H. Qiu, M. Kudo, and H. Sakata, Mater. Chem. Phys. 51, 233 (1997).

    Article  Google Scholar 

  10. K. Sega, H. Kasai, and H. Sakata, Mater. Chem. Phys. 53, 28 (1998).

    Article  Google Scholar 

  11. R.K. Joshi and H.K. Sehgal, Physica E 23, 168 (2004).

    Article  Google Scholar 

  12. H. Mori, K. Gotoh, and H. Sakata, J. Non-Cryst. Solids 183, 122 (1995).

    Article  Google Scholar 

  13. C.H. Chung and J.D. Mackenzi, J. Non-Cryst. Solids 42, 357 (1980).

    Article  Google Scholar 

  14. H. Mori, T. Kitami, and H. Sakata, J. Non-Cryst. Solids 168, 157 (1994).

    Article  Google Scholar 

  15. V.K. Dhawan and A. Mansingh, J. Non-Cryst. Solids 51, 87 (1982).

    Article  Google Scholar 

  16. O.M. Hussain and K.S. Rao, Chem. Phys. 80, 938 (2003).

    Google Scholar 

  17. M. Levy, M.J. Duclot, and F. Rousseau, J. Power Sources 26, 381 (1989).

    Article  Google Scholar 

  18. V. Rajendran, N. Palanivelu, B.K. Chaudhuri, and K. Goswami, J. Non-Cryst. Solids 320, 195 (2003).

    Article  Google Scholar 

  19. E.F. Lambson, G.A. Saunders, B. Bridge, and R.A. Mallawany, J. Non-Cryst. Solids 69, 117 (1984).

    Article  Google Scholar 

  20. D. Souri and M. Elahi, Phys. Scr. 75, 219 (2007).

    Article  Google Scholar 

  21. D. Souri, J. Non-Cryst. Solids 356, 2181 (2010).

    Article  Google Scholar 

  22. H. Mori, H. Matsuno, and H. Sakata, J. Non-Cryst. Solids 276, 78 (2000).

    Article  Google Scholar 

  23. I.G. Austin and N.F. Mott, Adv. Phys. 18, 41 (1969).

    Article  Google Scholar 

  24. N.F. Mott and E.A. Davis, Electronic Process in Non-crystalline Materials, 2nd ed. (New York: Oxford University Press, 1979).

    Google Scholar 

  25. R.A. Montani and M.A. Frechero, Solid State Ionics 158, 327 (2003).

    Article  Google Scholar 

  26. G. Turky and M. Dawy, Mater. Chem. Phys. 77, 48 (2002).

    Article  Google Scholar 

  27. K. Shimakawa, Philos. Mag 60, 377 (1989).

    Article  Google Scholar 

  28. H. Mori, T. Kitami, and H. Sakata, J. Ceram. Soc. Jpn. 101, 1351 (1993).

    Article  Google Scholar 

  29. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Souri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souri, D., Azizpour, P. & Zaliani, H. Electrical Conductivity of V2O5–TeO2–Sb Glasses at Low Temperatures. J. Electron. Mater. 43, 3672–3680 (2014). https://doi.org/10.1007/s11664-014-3288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3288-x

Keywords

Navigation