Skip to main content
Log in

Improvement of Thermoelectric Properties in (Bi0.5Sb0.5)2Te3 Films of Nanolayered Pillar Arrays

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, it is found that unique pillar arrays with nanolayered structure can favorably influence the carrier and phonon transport properties of films. p-(Bi0.5Sb0.5)2Te3 pillar array film with (0 1 5) orientation was successfully achieved by a simple ion-beam-assisted technique at deposition temperature of 400°C, owing to the enhanced mobility of deposited atoms for more sufficient growth along the in-plane direction. The pillar diameter was about 250 nm, and the layered nanostructure was clear, with each layer in the pillar array being <30 nm. The properties of the oriented (Bi0.5Sb0.5)2Te3 pillar array were greatly enhanced in comparison with those of ordinary polycrystalline films synthesized at deposition temperature of 350°C and 250°C. The (Bi0.5Sb0.5)2Te3 pillar array film with (0 1 5) preferred orientation exhibited a thermoelectric dimensionless figure of merit of ZT = 1.25 at room temperature. The unique pillar array with nanolayered structure is the main reason for the observed improvement in the properties of the (Bi0.5Sb0.5)2Te3 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pichanusakorn and P.R. Bandaru, J. Appl. Phys. 107, 074304 (2010).

    Article  Google Scholar 

  2. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  Google Scholar 

  3. W.S. Liu, X. Yan, G. Chen, and Z.F. Ren, Nano Energy 1, 42 (2012).

    Article  Google Scholar 

  4. M. Tan, Y. Deng, and Y.M. Hao, J. Phys. Chem. C 117, 20415 (2013).

    Article  Google Scholar 

  5. M. Tan, Y. Deng, and Y. Wang, Nano Energy 3, 144 (2014).

    Article  Google Scholar 

  6. R.S. Makala, K. Jagannadham, and B.C. Sales, J. Appl. Phys. 94, 3907 (2003).

    Article  Google Scholar 

  7. J.H. Kim, D.Y. Jeong, J.S. Kim, and B.K. Ju, J. Appl. Phys. 100, 123501 (2006).

    Article  Google Scholar 

  8. A.L. Bassi, A. Bailini, C.S. Casari, F. Donati, A. Mantegazza, M. Passoni, V. Russo, and C.E. Bottani, J. Appl. Phys. 105, 124307 (2009).

    Article  Google Scholar 

  9. N. Peranio and O. Eibl, J. Appl. Phys. 100, 114306 (2006).

    Article  Google Scholar 

  10. M. Tan, Y. Deng, and Y. Wang, J. Nanopart. Res. 14, 1204 (2012).

    Article  Google Scholar 

  11. W.E. Bies, R.J. Radtke, H. Ehrenreich, and E. Runge, Phys. Rev. B 65, 085208 (2002).

    Article  Google Scholar 

  12. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  Google Scholar 

  13. R. Kato, A. Maesono, and R.P. Tye, Int. J. Thermophys. 22, 617 (2001).

    Article  Google Scholar 

  14. J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B 79, 115311 (2009).

    Article  Google Scholar 

  15. X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z.F. Ren, Nano Lett. 10, 3373 (2010).

    Article  Google Scholar 

  16. B. Hamdou, J. Kimling, A. Dorn, E. Pippel, R. Rostek, P. Woias, and K. Nielsch, Adv. Mater. 25, 239 (2013).

    Article  Google Scholar 

  17. Y.M. Zuev, J.S. Lee, C. Galloy, H. Park, and P. Kim, Nano Lett. 10, 3037 (2010).

    Article  Google Scholar 

  18. J.H. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li, Z.Y. Li, M.M. Zou, and K. Wang, Adv. Funct. Mater. 23, 4317 (2013).

    Article  Google Scholar 

  19. S.V. Faleev and F. Leonard, Phys. Rev. B 77, 214304 (2008).

    Article  Google Scholar 

  20. A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas, Phys. Rev. B 79, 205302 (2009).

    Article  Google Scholar 

  21. M. Cutler and N.F. Mott, Phys. Rev. B 181, 1336 (1969).

    Article  Google Scholar 

  22. Y. Ma, Q. Hao, B. Poudel, Y.C. Lan, B. Yu, D.Z. Wang, G. Chen, and Z.F. Ren, Nano Lett. 8, 2580 (2008).

    Article  Google Scholar 

  23. D.H. Kim, I.H. Kwon, C. Kim, B. Han, H.J. Im, and H. Kim, J. Alloys Compd. 548, 126 (2013).

    Article  Google Scholar 

  24. J.P. Carmo, M.F. Silva, J.F. Ribeiro, R.F. Wolffenbuttel, P. Alpuim, J.G. Rocha, L.M. Goncalves, and J.H. Correia, Microsyst. Technol. 17, 1283 (2011).

    Article  Google Scholar 

  25. L. Francioso, C. De Pascali, I. Farella, C. Martucci, P. Cretì, P. Siciliano, and A. Perrone, J. Power Source 196, 3239 (2011).

    Article  Google Scholar 

  26. S. Sumithra, N.J. Takas, D.K. Misra, W.M. Nolting, P.F.P. Poudeu, and K.L. Stokes, Adv. Energy Mater. 1, 1141 (2011).

    Article  Google Scholar 

  27. Y. Min, J.W. Roh, H. Yang, M. Park, S.I. Kim, S. Hwang, S.M. Lee, K.H. Lee, and U. Jeong, Adv. Mater. 25, 1425 (2013).

    Article  Google Scholar 

  28. T. Zhang, J. Jiang, Y.K. Xiao, Y.B. Zhai, S.H. Yang, and G.J. Xu, ACS Appl. Mater. Interfaces 5, 3071 (2013).

    Article  Google Scholar 

  29. C. Schumacher, K.G. Reinsberg, R. Rostek, L. Akinsinde, S. Baessler, S. Zastrow, G. Rampelberg, P. Woias, C. Detavernier, J.A.C. Broekaert, J. Bachmann, and K. Nielsch, Adv. Energy Mater. 3, 95 (2013).

    Article  Google Scholar 

  30. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (New York: Taylor & Francis, 2006).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Development Fund Planning Project for the Universities of Tianjin, China (Grant No. 20130304) and the Scientific Research Fund Project of Tianjin University of Science and Technology, China (No. 20130121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M., Hao, Y. & Ren, X. Improvement of Thermoelectric Properties in (Bi0.5Sb0.5)2Te3 Films of Nanolayered Pillar Arrays. J. Electron. Mater. 43, 3098–3104 (2014). https://doi.org/10.1007/s11664-014-3264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3264-5

Keywords

Navigation