Skip to main content
Log in

Surface Roughness and Critical Exponent Analyses of Boron-Doped Diamond Films Using Atomic Force Microscopy Imaging: Application of Autocorrelation and Power Spectral Density Functions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The evolution of the surface roughness of growing metal or semiconductor thin films provides much needed information about their growth kinetics and corresponding mechanism. While some systems show stages of nucleation, coalescence, and growth, others exhibit varying microstructures for different process conditions. In view of these classifications, we report herein detailed analyses based on atomic force microscopy (AFM) characterization to extract the surface roughness and growth kinetics exponents of relatively low boron-doped diamond (BDD) films by utilizing the analytical power spectral density (PSD) and autocorrelation function (ACF) as mathematical tools. The machining industry has applied PSD for a number of years for tool design and analysis of wear and machined surface quality. Herein, we present similar analyses at the mesoscale to study the surface morphology as well as quality of BDD films grown using the microwave plasma-assisted chemical vapor deposition technique. PSD spectra as a function of boron concentration (in gaseous phase) are compared with those for samples grown without boron. We find that relatively higher boron concentration yields higher amplitudes of the longer-wavelength power spectral lines, with amplitudes decreasing in an exponential or power-law fashion towards shorter wavelengths, determining the roughness exponent (α ≈ 0.16 ± 0.03) and growth exponent (β ≈ 0.54), albeit indirectly. A unique application of the ACF, which is widely used in signal processing, was also applied to one-dimensional or line analyses (i.e., along the x- and y-axes) of AFM images, revealing surface topology datasets with varying boron concentration. Here, the ACF was used to cancel random surface “noise” and identify any spatial periodicity via repetitive ACF peaks or spatially correlated noise. Periodicity at shorter spatial wavelengths was observed for no doping and low doping levels, while smaller correlations were observed for relatively higher boron concentration. These semiquantitative spatial analyses may prove useful in comparing synthesis techniques and varying compositional makeups of diamond films and other technologically important electronic materials. These findings in terms of critical exponents are also correlated with traditional Raman spectroscopy and x-ray diffraction structural properties, thus helping to provide insight into the growth kinetics, albeit in reverse manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kalish, Properties of Diamond, Vol. 6, ed. G. Davies (London: INSPEC, 1994),

    Google Scholar 

  2. J.A. Garrido, C.E. Nebel, M. Stutzmann, E. Gheeraert, N. Casanova, E. Bustarret, and A. Deneuville, Diam. Relat. Mater. 11, 347 (2002).

    Article  Google Scholar 

  3. J.C. Angus, P. Koidl, and S. Domitz, Plasma Deposited Thin Films, ed. J. Mort and F. Jansen (Boca Raton, FL: CRC, 1986),

    Google Scholar 

  4. P.K. Bachmann and R. Messier, Chem. Eng. News 67, 24 (1989).

    Article  Google Scholar 

  5. M.H. Nazare, Properties and Growth of Diamond.EMIS Data Review Series, ed. G. Davies (London: INSPEC, 1994), p. 85.

    Google Scholar 

  6. P. John, Diam. Relat. Mater. 11, 861 (2002).

    Article  Google Scholar 

  7. A.E. Fischer, Y. Show, and G.M. Swain, Anal. Chem. 76, 2553 (2004).

    Article  Google Scholar 

  8. M.A. Rodrigo, P.A. Michaud, I. Duo, M. Panizza, G. Cerisola, and Ch Cominellis, J. Electrochem. Soc. 148, D60 (2001).

    Article  Google Scholar 

  9. E. Kohn, P. Gluche, and M. Adamschik, Diam. Relat. Mater. 8, 934 (1999).

    Article  Google Scholar 

  10. S. Gupta, B.L. Weiss, B.R. Weiner, L. Pilione, A. Badzian, and G. Morell, J. Appl. Phys. 92, 3311 (2002) and references therein.

  11. A.V. Sumant, D.S. Grierson, J.E. Gerbi, J. Birrell, U.D. Lanke, O. Auciello, J.A. Carlisle, and R.W. Carpick, Adv. Mat. 17, 1039 (2005).

    Article  Google Scholar 

  12. A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, and M.Q. Ding, Diam. Relat. Mater. 10, 1952 (2001).

    Article  Google Scholar 

  13. J.B. Cui, J. Robertson, and W.I. Milne, Diam. Relat. Mater. 10, 868 (2001) and references therein.

  14. K.H. Chen, Y.L. Lai, L.C. Chen, J.Y. Wu, and F.J. Kao, Thin Solid Films 270, 143 (1995).

    Article  Google Scholar 

  15. W.A. Yarbrough and R. Messier, Science 247, 688 (1990).

    Article  Google Scholar 

  16. R. Kalish, Diam. Relat. Mater. 10, 1749 (2001).

    Article  Google Scholar 

  17. A.W.S. Williams, E.C. Lightowlers, and A.T. Collins, J.␣Phys. C: Solid State Phys. 3, 1727 (1970).

    Article  Google Scholar 

  18. E. Bustarret, E. Gheeraert, and K. Watanabe, Phys. Stat. Sol. A 199, 9 (2004) and references therein.

  19. R. Viswanathan and M.B. Heaney, Phys. Rev. Lett. 75, 4433 (1995).

    Article  Google Scholar 

  20. K.B. Holt, A.J. Bard, Y. Show, and G.M. Swain, J. Phys. Chem. B 108, 15117 (2004).

    Article  Google Scholar 

  21. H. Assender, V. Bliznyuk, and K. Porfyrakis, Science 297, 973 (2002).

    Article  Google Scholar 

  22. J. Heo and M. Bockrath, Nano Lett. 5, 853 (2005) and references therein.

  23. C. Stali, T. Johnson Jr., and N.J. Pinto, Nano Lett. 4, 859 (2004) and references therein.

  24. Y. Oyanagi, Int. Polym. Sci. Technol. 24, T38 (1997).

    Google Scholar 

  25. D.J. Whitehouse, Meas. Sci. Technol. 8, 955 (1997).

    Article  Google Scholar 

  26. R. Beighley, E. Spedden, K. Sekeroglu, T. Atherton, M.C. Demirel, and C. Staii, Appl. Phys. Lett. 101, 143701 (2012).

    Article  Google Scholar 

  27. D. Ronnow, J. Isidorsson, and G.A. Niklasson, Phys. Rev. 54, 4021 (1996).

    Article  Google Scholar 

  28. For details on roughness and critical exponents analysis, please see M.C. Salvadori, M.G. Silveira, and M. Cattani, Thin Solid Films, 354, 1 (1999).

  29. P.A. Lynn, An Introduction to the Analysis and Processing of Signals (Indianapolis: Howard W. Sams & Co. Inc., 1983), p. 85.

    Google Scholar 

  30. MATLAB (ver 2010b) Signal Processing Toolbox, Spectral Estimation Method.

  31. R. Ramirez, The FFT, Fundamentals and Concepts (London: Prentice-Hall Inc., 1985), pp. 154–155.

    Google Scholar 

  32. D. Morgan, Practical DSP Modeling, Techniques, and Programming in C (New York: Wiley, 1994), p. 332.

    Google Scholar 

  33. O.A. Williams, M. Daenena, J. D’Haen, K. Haenen, J. Maes, V.V. Moshchalkov, M. Nesládek, and D.M. Gruen, Diam. Relat. Mater. 15, 230 (2005).

    Google Scholar 

  34. O.A. Williams, S. Curat, R.B. Jackman, J.E. Gerbi, and D.M. Gruen, Appl. Phys. Lett. 85, 1680 (2004).

    Article  Google Scholar 

  35. P.R. Gill, W. Murray, and M.H. Wright, The Levenberg–Marquardt Method. Practical Optimization, Vol. 4.7.3 (London: Academic Press, 1981), pp. 136–137.

    Google Scholar 

  36. D.M. Gruen, Annu. Rev. Mater. Sci. 29, 211 (1999).

    Article  Google Scholar 

  37. S. Gupta, B.R. Weiner, and G. Morell, J. Mater. Res. 18, 363 (2002) and references therein.

  38. B.D. Cullity, Elements of X-ray diffraction, 2nd ed. (Massachusetts: Addison-Wesley, 1978), pp. 102–111.

    Google Scholar 

  39. M. Yoshikawa, Y. Mori, H. Obata, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, Appl. Phys. Lett. 67, 694 (1995).

    Article  Google Scholar 

  40. S. Prawer and R.J. Nemanich, Phil. Trans. R. Soc. Lond. A 13, 2537 (2004).

    Article  Google Scholar 

  41. J.A. Bennett, J. Wang, Y. Show, and G.M. Swain, J. Electrochem. Soc. 151, E306 (2004).

    Article  Google Scholar 

  42. M. Mermoux, B. Marcus, G.M. Swain, and J.E. Butler, J.␣Phys. Chem. B 106, 10816 (2002).

    Article  Google Scholar 

  43. R.J. Nemanich, J.T. Glass, G. Lucovsky, and R.E. Shroder, J. Vac. Sci. Technol. A 6, 1783 (1988).

    Article  Google Scholar 

  44. D.S. Knight and W.B. White, J. Mater. Res. 4, 385 (1989).

    Article  Google Scholar 

  45. L. Bergman and R.J. Nemanich, J. Appl. Phys. 78, 6709 (1995).

    Article  Google Scholar 

  46. P. Gonon, E. Gheeraert, A. Deneuville, F. Fontaine, L. Abello, and G. Lucazeau, J. Appl. Phys. 78, 7059 (1995).

    Article  Google Scholar 

  47. J.W. Ager III, W. Walukiewicz, M. McMluskey, M.A. Plano, and M.I. Landstrass, Appl. Phys. Lett. 66, 616 (1995).

    Article  Google Scholar 

  48. K. Ushizawa, K. Watanabe, T. Ando, I. Sakaguchi, M. Nishitani-Gamo, Y. Sato, and H. Kanda, Diam. Relat. Mater. 7, 1719 (1998).

    Article  Google Scholar 

  49. P. Pruvost, E. Bustarret, and A. Deneuville, Diam. Relat. Mater. 9, 295 (2000).

    Article  Google Scholar 

  50. P. Pruvost and A. Deneuville, Diam. Relat. Mater. 10, 531 (2001).

    Article  Google Scholar 

  51. S. Prawer, K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, and J.L. Peng, Chem. Phys. Lett. 332, 93 (2000).

    Article  Google Scholar 

  52. A.C. Ferrari and J. Robertson, Phys. Rev. B 63, 121405 (2001).

    Article  Google Scholar 

  53. A.C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Article  Google Scholar 

  54. H. Kuzmany, R. Pfeiffer, N. Salk, and B. Günther, Carbon 42, 911 (2004).

    Article  Google Scholar 

  55. D.M. Gruen, M.A. Krauss, R. Zuiker, C.D. Csencsits, R. Terminello, J.A. Carlisle, I. Jimenez, D.G.J. Sutherland, D.K. Shu, W. Tong, and F. Himpsel, Appl. Phys. Lett. 68, 1640 (1996).

    Article  Google Scholar 

  56. F. Family, J. Phys. A 18, L75 (1985).

    Article  Google Scholar 

  57. M. Kardar, G. Parisi, and Y. Zhang, Phys. Rev. Lett. 56, 889 (1986).

    Article  Google Scholar 

  58. S. Das Sarma and P. Tamborenea, Phys. Rev. Lett. 66, 325 (1991).

    Article  Google Scholar 

  59. A.L. Barabási and H.E. Stanley, Fractal Concepts in Surface Growth (New York: Cambridge University Press, 1995).

    Book  Google Scholar 

  60. E. Medina, T. Hwa, and M. Kardar, Phys. Rev. A 39, 3053 (1989).

    Article  Google Scholar 

  61. T. Hwa, M. Kardar, and M. Paczuski, Phys. Rev. Lett. 66, 441 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

G.P.V and S.G. gratefully acknowledge Ryan Giedd and Rishi Patel (CASE, Springfield-Missouri) for providing the AFM instrument used in this study and for technical assistance in corresponding measurements, respectively. S.G. would also like to acknowledge Olivier Williams (then at IMEC, Belgium) for providing the BDD samples used in this study and discussing growth-related studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gupta.

Additional information

This work was primarily conducted while author S.G. mentored graduate student G.P.V. at Missouri State University–Springfield.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Vierkant, G.P. Surface Roughness and Critical Exponent Analyses of Boron-Doped Diamond Films Using Atomic Force Microscopy Imaging: Application of Autocorrelation and Power Spectral Density Functions. J. Electron. Mater. 43, 3436–3448 (2014). https://doi.org/10.1007/s11664-014-3262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3262-7

Keywords

Navigation