Skip to main content
Log in

Nanostructured ZnO Films for Room Temperature Ammonia Sensing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV–Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (∼30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Malins, A. Doyle, B.D. Mac Craith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusik, J. Environ. Monit. 1, 417 (1999).

    Article  Google Scholar 

  2. W. Cao and Y. Duan, Sens. Actuators B 110, 252 (2005).

    Article  Google Scholar 

  3. B. Timmer, W. Olthuis, and A.V.N. Berg, Sens. Actuators B 107, 666 (2005).

    Article  Google Scholar 

  4. A.K. Yewale, K.B. Raulkar, A.S. Wadatkar, and G.T. Lamdhade, J. Electron. Devices 11, 544 (2011).

    Google Scholar 

  5. Marion E. Franke, Tobias J. Koplin, and Ulrich Simon, Small 2, 36 (2006).

    Article  Google Scholar 

  6. N. Barsan, D. Koziej, and U. Weimar, Sens. Actuators B 121, 18 (2007).

    Article  Google Scholar 

  7. X.L. Zhang, K.N. Hui, K.S. Hui, and J. Singh, Mater. Res. Bull. 48, 1093 (2013).

    Article  Google Scholar 

  8. Y. Wang, X. Zhang, H. Zhang, Q. Huang, F. Yang, X. Meng, C. Wei, and Y. Zhao, Sol. Energy Mater. Sol. Cells 121, 49 (2014).

    Article  Google Scholar 

  9. K. Khojier, H. Savaloni, and E. Amani, Appl. Surf. Sci. 289, 564 (2014).

    Article  Google Scholar 

  10. Q. Humayun, M. Kashif, and U. Hashim, Optik 124, 5961 (2013).

    Article  Google Scholar 

  11. M.A. Chougule, S. Sen, and V.B. Patil, Ceram. Int. 38, 2685 (2012).

    Article  Google Scholar 

  12. S. Bai, C. Sun, T. Guo, R. Luo, Y. Lin, A. Chen, L. Sun, and J. Zhang, Electrochim. Acta 90, 530 (2013).

    Article  Google Scholar 

  13. S. Benramache, B. Benhaoua, F. Chabane, and A. Guettaf, Optik 124, 3221 (2013).

    Article  Google Scholar 

  14. D.P. Rueda, J.M. Vadillo, and J.J. Laserna, Appl. Surf. Sci. 259, 806 (2012).

    Article  Google Scholar 

  15. C.H. Lee and D.W. Kim, Thin Solid Films 546, 38 (2013).

    Article  Google Scholar 

  16. Y. Wang and B. Chu, Superlattices Microstruct. 44, 54 (2008).

    Article  Google Scholar 

  17. Z. Ji, Q. Mao, and W. Ke, Solid State Commun. 150, 1919 (2010).

    Article  Google Scholar 

  18. A.I. Ali, A.H. Ammar, and A. Abdel Moez, Superlattices Microstruct. 65, 285 (2014).

    Article  Google Scholar 

  19. G. Sarala Devi, V. Bala Subrahmanyam, S.C. Gadkari, and S.K. Gupta, Anal. Chim. Acta 568, 41 (2006).

    Article  Google Scholar 

  20. T.Y. Chen, H.I. Chen, C.S. Hsu, C.C. Huang, J.S. Wu, P.C. Chou, and W.C. Liu, IEEE Electron Device Lett. 10, 1486 (2012).

    Article  Google Scholar 

  21. R. Mariappan, V. Ponnuswamy, and M. Ragavendar, Mater. Sci. Semicond. Process. 16, 1328 (2013).

    Article  Google Scholar 

  22. T. Siciliano, M.D. Giulio, M. Tepore, E. Filippo, G. Micocci, and A. Tepore, Sens. Actuators B 137, 664 (2009).

    Article  Google Scholar 

  23. G. Sberveglieri, S. Groppelli, P. Nelli, A. Tintinelli, and G. Giunta, Sens. Actuators B 24, 588 (1995).

    Article  Google Scholar 

  24. M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, and L.A. Patil, Sens. Actuators B 115, 128 (2006).

    Article  Google Scholar 

  25. A.P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, and F. Iacomi, Appl. Surf. Sci. 280, 598 (2013).

    Article  Google Scholar 

  26. D.R. Patil, L.A. Patil, and P.P. Patil, Sens. Actuators B 126, 368 (2007).

    Article  Google Scholar 

  27. S.L. Patil, M.A. Chougule, Shashwati Sen, and V.B. Patil, Measurement 45, 243 (2012).

    Article  Google Scholar 

  28. Yi Zeng, Zheng Lou, Lili Wang, Bo Zou, Tong Zhang, Weitao Zheng, and Guangtian Zou, Sens. Actuators B 156, 395 (2011).

    Article  Google Scholar 

  29. G.S. Trivikrama Rao and D. Tarakarama Rao, Sens. Actuators B 55, 166 (1999).

    Article  Google Scholar 

  30. S.J. Chang, W.Y. Weng, C.L. Hsu, and T.J. Hsueh, Nano Commun Netw 1, 283 (2010).

    Article  Google Scholar 

  31. P. Dhivya, A.K. Prasad, and M. Sridharan, J. Solid State Chem. (2013). doi:10.1016/j.jssc.2013.11.030.

    Google Scholar 

  32. P. Dhivya, A.K. Prasad, and M. Sridharan, Int. J. Hydrog. Energy 37, 18575 (2012).

    Article  Google Scholar 

  33. P. Dhivya, A.K. Prasad, and M. Sridharan, Ceram. Int. 40, 409 (2014).

    Article  Google Scholar 

  34. Y. Zeng, L. Qiao, Y. Bing, M.W. Bo Zou, W. Zheng, T. Zhang, and G. Zou, Sens. Actuators B 173, 897 (2012).

    Article  Google Scholar 

  35. K.W. Kim, P.S. Cho, S.J. Kim, J.H. Lee, C.Y. Kang, J.S. Kim, and S.J. Yoon, Sens. Actuators B 123, 318 (2007).

    Article  Google Scholar 

  36. A. Tanǔsevski and V. Georgieva, Appl. Surf. Sci. 256, 5056 (2010).

    Article  Google Scholar 

  37. R. Hong, H. Qi, J. Huang, H. He, Z. Fan, and J. Shao, Thin Solid Films 473, 58 (2005).

    Article  Google Scholar 

  38. J. Tauc, Amorphous and Liquid Semiconductors (London: Plenum, 1974), p. 159.

    Book  Google Scholar 

  39. P. Prepelita, R. Medianu, F. Garoi, N. Stefan, and F. Iacomi, Thin Solid Films 518, 4615 (2010).

    Article  Google Scholar 

  40. J. Li, H. Fan, X. Jia, W. Yang, and P. Fang, Appl. Phys. A 98, 537 (2010).

    Article  Google Scholar 

  41. V.X. Hien, J.H. Lee, J.J. Kim, and Y.W. Heo, Sens. Actuators B 194, 134 (2014).

    Article  Google Scholar 

  42. S. Yi, S. Tian, D. Zeng, K. Xu, S. Zhang, and C. Xie, Sens. Actuators B 185, 345 (2013).

    Article  Google Scholar 

  43. G. Zhu, C. Xi, H. Xu, D. Zheng, Y. Liu, X. Xu, and X. Shen, RSC Adv. 2, 4236 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridharan Madanagurusamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhivya Ponnusamy, Sridharan Madanagurusamy Nanostructured ZnO Films for Room Temperature Ammonia Sensing. J. Electron. Mater. 43, 3211–3216 (2014). https://doi.org/10.1007/s11664-014-3253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3253-8

Keywords

Navigation