Skip to main content

Advertisement

Log in

Improved Hydrogen Capping Effect in n-Type Crystalline Silicon Solar Cells by SiN(Si-Rich)/SiN(N-Rich) Stacked Passivation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of hydrogen capping of SiN(Si-rich)/SiN(N-rich) stacks for n-type c-Si solar cells was investigated. Use of a passivation layer consisting of Si-rich SiN with a refractive index (n) of 2.7 and N-rich SiN with a refractive index of 2.1 improved the thermal stability. A single SiN passivation layer with a refractive index of 2.05 resulted in an initial lifetime of 200 μs whereas the layer with a refractive index of 2.7 resulted in a high initial lifetime of 2 ms, but the layer degraded rapidly after firing. A stacked passivation layer with refractive indices of 2.1 and 2.7 had a stable lifetime of 1.5 ms with an implied open-circuit voltage (iV oc) of 720 mV after firing. The thermally stable passivation mechanism with changing amounts of Si–N and Si–H bonding was analyzed by Fourier-transform infrared (FTIR) spectroscopy. Incorporation of the SiN x stack layer (2.7 + 2.1) into the passivated rear of n-type Cz silicon screen-printed solar cells resulted in energy conversion efficiency of 19.69%. Improved internal quantum efficiency in the long-wavelength range above 900 nm, with V oc of 630 mV, is mainly because of superior passivation of the rear surface compared with conventional solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Aberle, Prog. Photovolt. Res. Appl. 8, 473 (2000).

    Article  Google Scholar 

  2. M.J. Kerr and A. Cuevas, Semicond. Sci. Technol. 17, 35 (2002).

    Article  Google Scholar 

  3. S.W. Glunz, A. Grohe, M. Hermle, et al., Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (Barcelona, Spain, June 2005), pp. 572–577.

  4. S. Dauwe, L. Mittelstadt, A. Metz, and R. Hezel, Prog Photovolt. Res Appl. 10, 271 (2002).

    Article  Google Scholar 

  5. H. Plagwitz, Y. Takahashi, B. Terheiden, and R. Brendel, Proceedings of the 21st European Photovoltaic Solar Energy Conference and Exhibition (2006), pp. 688–691.

  6. J. Schmidt, J.D. Moschner, J. Henze, S. Dauwe, and R. Hezel, Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition (2004), pp. 391–396.

  7. A.G. Aberle, Sol. Energy Mater. Sol. Cells 65, 239–248 (2001).

    Article  Google Scholar 

  8. F. Duerinckx and J. Szulfcik, Sol. Energy Mater. Sol. Cells 72, 231–246 (2002).

    Article  Google Scholar 

  9. K. Koyama, K. Ohdaira, and H. Matsumura, Appl. Phys. Lett. 97, 1–3 (2010).

    Article  Google Scholar 

  10. B. Lenkeit, S. Steckemetz, F. Artuso, and R. Hezel, Sol. Energy Mater. Sol. Cells 65, 317–323 (2001).

    Article  Google Scholar 

  11. B. Hallam, B. Tjahjono, and S. Wenham, Sol. Energy Mater. Sol. Cells 96, 173–179 (2012).

    Article  Google Scholar 

  12. F. Giogris, F. Giuliani, C.F. Pirri, E. Tresso, C. Summonte, R. Rizzoli, R. Gallo, A. Desalvo, and P. Rava, Philos. Mag. B 77, 925–944 (1998).

    Google Scholar 

  13. F.L. Martinez, R. Ruiz-merino, A. Prado, and E. San Andres, et al., Thin Solid Films 459, 203–207 (2004).

    Article  Google Scholar 

  14. J.J. Mei, H. Chen, W.Z. Shena, and H.F.W. Dekkers, J. Appl. Phys. 100, 073516 (2006).

    Article  Google Scholar 

  15. E. Bustarret, M. Bensouda, M.C. Habrard, and J.C. Bruyere, Phys. Rev. B 38, 8171–8184 (1988).

    Article  Google Scholar 

  16. A. Richter, J. Benick, A. Kalio, J. Seiffe, M. Hörteis, M. Hermle, and S.W. Glunz, Energy Procedia 8, 479–486 (2011).

    Article  Google Scholar 

  17. M. Tucci, E. Talgorn, L. Serenelli, E. Salza, M. Izzi, and P. Mangiapane, Thin Solid Films 516, 6767–6770 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Global Excellent Technology Innovation of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20135020910050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsin Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Balaji, N., Dao, V.A. et al. Improved Hydrogen Capping Effect in n-Type Crystalline Silicon Solar Cells by SiN(Si-Rich)/SiN(N-Rich) Stacked Passivation. J. Electron. Mater. 43, 3191–3195 (2014). https://doi.org/10.1007/s11664-014-3244-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3244-9

Keywords

Navigation