Skip to main content

Influence of Grain Size on the Thermoelectric Properties of Polycrystalline Silicon Nanowires


The thermoelectric properties of doped polycrystalline silicon nanowires have been investigated using doping techniques that impact grain growth in different ways during the doping process. In particular, As- and P-doped nanowires were fabricated using a process flow which enables the manufacturing of surface micromachined nanowires contacted by Al/Si pads in a four-terminal configuration for thermal conductivity measurement. Also, dedicated structures for the measurement of the Seebeck coefficient and electrical resistivity were prepared. In this way, the thermoelectric figure of merit of the nanowires could be evaluated. The As-doped nanowires were heavily doped by thermal doping from spin-on-dopant sources, whereas predeposition from POCl3 was utilized for the P-doped nanowires. The thermal conductivity measured on the nanowires appeared to depend on the doping type. The P-doped nanowires showed, for comparable cross-sections, higher thermal conductivity values than As-doped nanowires, most probably because of their finer grain texture, resulting from the inhibition effect that such doping elements have on grain growth during high-temperature annealing.

This is a preview of subscription content, access via your institution.


  1. 1.

    I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. Yu, W.A. Goddard, and J.R. Heath, Nature 451, 168 (2008).

    Article  Google Scholar 

  2. 2.

    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  3. 3.

    L. Pichon, E. Jacques, R. Rogel, A.C. Salaun, and F. Demami, Semicond. Sci. Technol. 28, 025002 (2013).

    Article  Google Scholar 

  4. 4.

    G. Wenga, E. Jacques, A.-C. Salaün, R. Rogel, L. Pichon, and F. Geneste, Biosens. Bioelectron. 40, 141 (2013).

    Article  Google Scholar 

  5. 5.

    C.-J. Su, Y.-F. Huang, H.-C. Lin, and T.-Y. Huang, Solid State Electron. 77, 20 (2012).

    Article  Google Scholar 

  6. 6.

    G.F. Cerofolini, M. Ferri, E. Romano, F. Suriano, G.P. Veronese, S. Solmi, and D. Narducci, Semicond. Sci. Technol. 25, 095011 (2010).

    Article  Google Scholar 

  7. 7.

    M. Ferri, F. Suriano, A. Roncaglia, S. Solmi, G.F. Cerofolini, E. Romano, and D. Narducci, Microelectron. Eng. 88, 877 (2011).

    Article  Google Scholar 

  8. 8.

    W. Liu and M. Asheghi, J. Appl. Phys. 98, 123523 (2005).

    Article  Google Scholar 

  9. 9.

    L.-B. Luo, X.-B. Yang, F.-X. Liang, H. Xu, Y. Zhao, X. Xie, W.-F. Zhang, and S.-T. Lee, J. Phys. Chem. C 115, 18453 (2011).

    Article  Google Scholar 

  10. 10.

    X.H. Sun, S.D. Wang, N.B. Wong, D.D.D. Ma, S.T. Lee, and B.K. Teo, Inorg. Chem. 42, 2398 (2003).

    Article  Google Scholar 

  11. 11.

    R.A. Smith, Semiconductors (Cambridge: Cambridge University Press, 1959), p. 172.

    Google Scholar 

  12. 12.

    T. Kamins, Polycrystalline silicon for integrated circuit applications (Dordrecht: Kluwer Academic Publishers, 1988), p. 78.

    Book  Google Scholar 

  13. 13.

    P.R. Bandaru and P. Pichanusakorn, Semicond. Sci. Technol. 25, 024003 (2010).

    Article  Google Scholar 

  14. 14.

    M. von Arx, O. Paul, and H. Baltes, J. Microelectromech. Syst. 9, 136 (2000).

    Article  Google Scholar 

  15. 15.

    J. Xie, C. Lee, M.F. Wang, Y.H. Liu, and H.H. Feng, J. Micromech. Microeng. 19, 125029 (2009).

    Article  Google Scholar 

  16. 16.

    A.D. McConnell, S. Uma, and K. Goodson, J. Microelectromech. Syst. 10, 360 (2001).

    Article  Google Scholar 

  17. 17.

    A. Stranz, J. Kähler, A. Waag, and E. Peiner, J. Electron. Mater. 42, 2381 (2013).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. Narducci.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suriano, F., Ferri, M., Moscatelli, F. et al. Influence of Grain Size on the Thermoelectric Properties of Polycrystalline Silicon Nanowires. Journal of Elec Materi 44, 371–376 (2015).

Download citation


  • Nanowire
  • polycrystalline silicon
  • grain boundaries
  • thermal conductivity