Advertisement

Journal of Electronic Materials

, Volume 43, Issue 10, pp 3812–3816 | Cite as

Paradoxical Enhancement of the Power Factor of Polycrystalline Silicon as a Result of the Formation of Nanovoids

  • B. Lorenzi
  • D. Narducci
  • R. Tonini
  • S. Frabboni
  • G. C. Gazzadi
  • G. Ottaviani
  • N. Neophytou
  • X. Zianni
Article

Abstract

Hole-containing silicon has been regarded as a viable candidate thermoelectric material because of its low thermal conductivity. However, because voids are efficient scattering centers not just for phonons but also for charge carriers, achievable power factors (PFs) are normally too low for its most common form, i.e. porous silicon, to be of practical interest. In this communication we report that high PFs can, indeed, be achieved with nanoporous structures obtained from highly doped silicon. High PFs, up to a huge 22 mW K−2 m−1 (more than six times higher than values for the bulk material), were observed for heavily boron-doped nanocrystalline silicon films in which nanovoids (NVs) were generated by He+ ion implantation. In contrast with single-crystalline silicon in which He+ implantation leads to large voids, in polycrystalline films implantation followed by annealing at 1000°C results in homogeneous distribution of NVs with final diameters of approximately 2 nm and densities of the order of 1019 cm−3 with average spacing of 10 nm. Study of its morphology revealed silicon nanograins 50 nm in diameter coated with 5-nm precipitates of SiB x . We recently reported that PFs up to 15 mW K−2 m−1 could be achieved for silicon–boron nanocomposites (without NVs) because of a simultaneous increase of electrical conductivity and Seebeck coefficient. In that case, the high Seebeck coefficient was achieved as a result of potential barriers on the grain boundaries, and high electrical conductivity was achieved as a result of extremely high levels of doping. The additional increase in the PF observed in the presence of NVs (which also include SiB x precipitates) might have several possible explanations; these are currently under investigation. Experimental results are reported which might clarify the reason for this paradoxical effect of NVs on silicon PF.

Keywords

Silicon thermoelectricity nanovoids energy filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Carruthers, T.H. Geballe, H.M. Rosenberg, J.M. Ziman, Proc. R. Soc. 238, 502 (1957)CrossRefGoogle Scholar
  2. 2.
    Y.C. Tai, C.H. Mastrangelo, R.S. Muller, J. Appl. Phys. 63(5), 1442 (1988)CrossRefGoogle Scholar
  3. 3.
    A. Stranz, J. Khler, A. Waag, E. Peiner, J. Electron. Mater. 42(7), 2381 (2013)CrossRefGoogle Scholar
  4. 4.
    D. Narducci, E. Selezneva, A. Arcari, G. Cerofolini, E. Romano, R. Tonini, and G. Ottaviani, in MRS Online Proc. Library, Vol. 1314 (MRS, 2011), Mrsf10-1314-ll05-16.Google Scholar
  5. 5.
    D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, G. Ottaviani, AIP Conf. Proc. 1449(1), 311 (2012)CrossRefGoogle Scholar
  6. 6.
    D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, G. Ottaviani, J. Solid State Chem. 193, 19 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Tang, H.T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang, Nano Lett. 10(10), 4279 (2010)CrossRefGoogle Scholar
  8. 8.
    J. Boor, D. Kim, X. Ao, M. Becker, N. Hinsche, I. Mertig, P. Zahn, V. Schmidt, Appl. Phys. A 107(4), 789 (2012)CrossRefGoogle Scholar
  9. 9.
    G.F. Cerofolini, G. Calzolari, F. Corni, S. Frabboni, C. Nobili, G. Ottaviani, R. Tonini, Phys. Rev. B 61, 10183 (2000)CrossRefGoogle Scholar
  10. 10.
    L.J. Van Der Pauw, Philips Res. Rep. 13(1), 1 (1958)Google Scholar
  11. 11.
    C. Wood, A. Chmielewski, D. Zoltan, Rev. Sci. Instrum. 59(6), 951 (1988)CrossRefGoogle Scholar
  12. 12.
    S. Frabboni, F. Corni, C. Nobili, R. Tonini, G. Ottaviani, Phys. Rev. B 69, 165209 (2004)CrossRefGoogle Scholar
  13. 13.
    E. Romano, G.F. Cerofolini, D. Narducci, F. Corni, S. Frabboni, G. Ottaviani, R. Tonini, Surf. Sci. 603(14), 2188 (2009)CrossRefGoogle Scholar
  14. 14.
    V. Raineri, M. Saggio, E. Rimini, J. Mater. Res. 15(7), 1449 (2000)CrossRefGoogle Scholar
  15. 15.
    W. Beyer, R. Carius, U. Zastrow, J. Non-Cryst Solids 352(9–20), 1402 (2006)CrossRefGoogle Scholar
  16. 16.
    K.J. Abrams, S.E. Donnelly, M.F. Beaufort, J. Terry, L.I. Haworth, D. Alquier, Phys. Status Solidi C 6(8), 1964 (2009)CrossRefGoogle Scholar
  17. 17.
    H.J. Kim and C.V. Thompson, MRS Proceedings, Vol. 106, p. 143.Google Scholar
  18. 18.
    D. Narducci, E. Selezneva, G. Cerofolini, E. Romano, R.␣Tonini, G. Ottaviani, Proceedings of the 8th European Conference on Thermoelectric (CNR, Como, 2010), p. 141Google Scholar
  19. 19.
    B. Lorenzi, S. Frabboni, G. Gazzadi, R. Tonini, G. Ottaviani, and D. Narducci, J. Electron. Mater. In press (2014).Google Scholar
  20. 20.
    N. Neophytou, X. Zianni, M. Ferri, A. Roncaglia, G. Cerofolini, D. Narducci, J. Electron. Mater. 42, 2393 (2013)CrossRefGoogle Scholar
  21. 21.
    N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, D. Narducci, Nanotechnology 24(20), 205402 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Adey, R. Jones, D.W. Palmer, P.R. Briddon, S. Öberg, Phys. Rev. B 71, 165211 (2005)CrossRefGoogle Scholar
  23. 23.
    D. Chattopadhyay, H.J. Queisser, Rev. Mod. Phys. 53(4), 745 (1981)CrossRefGoogle Scholar
  24. 24.
    S. Kumar, S. Heister, X. Xu, J. Salvador, G. Meisner, J. Electron. Mater. 42(4), 665 (2013)CrossRefGoogle Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • B. Lorenzi
    • 1
  • D. Narducci
    • 1
  • R. Tonini
    • 2
  • S. Frabboni
    • 2
    • 3
  • G. C. Gazzadi
    • 3
  • G. Ottaviani
    • 2
  • N. Neophytou
    • 4
    • 5
  • X. Zianni
    • 6
    • 7
  1. 1.Department of Materials ScienceUniversity of Milano BicoccaMilanItaly
  2. 2.Department of FIMUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.CNRInstitute of Nanoscience-S3ModenaItaly
  4. 4.Institute for MicroelectronicsTechnical University of ViennaViennaAustria
  5. 5.School of EngineeringUniversity of WarwickCoventryUK
  6. 6.Department of Aircraft TechnologyEducational Institution of Sterea ElladaPsachnaGreece
  7. 7.Department of Microelectronics, IAMPPNMNCSR DemokritosAthensGreece

Personalised recommendations