Journal of Electronic Materials

, Volume 43, Issue 10, pp 3785–3791 | Cite as

Macro and Micro-Scale Features of Thermoelectric PbTe (Br, Na) Systems: Micro-FTIR Spectroscopy, Micro-Seebeck Measurements, and SEM/EDX Observations

  • E.C. Stefanaki
  • G.S. Polymeris
  • P.M. Nikolic
  • Ch. Papageorgiou
  • E. Pavlidou
  • E. Hatzikraniotis
  • Th. Kyratsi
  • K.M. Paraskevopoulos
Article

Abstract

In this work, n-type and p-type PbTe doped with Br and Na, respectively, were thoroughly examined to determine the effect of the dopant on microstructure. Macro and micro homogeneity of the samples were studied by means of micro-Fourier-transform infrared (micro-FTIR) spectroscopy, micro-Seebeck measurements, and scanning electron microscopy with energy-dispersive x-ray analysis (SEM/EDX). SEM/EDX observations showed the samples were not single-phase materials—second phases were created by inclusions that disturbed the coherence of the matrix and, subsequently, drastically affected the Seebeck coefficient. In a micro-scale study, local variations of sodium content were detected in Na-doped samples; in Br-doped samples a second, PbBr2, phase was observed in the PbTe matrix. A direct effect of matrix dopant on Seebeck coefficient and plasmon frequency for the Br-doped and Na-doped samples was observed by use of the three complementary techniques.

Keywords

Microstructure nano-inclusions Na-doped PbTe plasmon frequency inhomogeneities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Pei, A. LaLonde, S. Iwanaga, and G.J. Snyder, Energy Environ. Sci. 4, 2085 (2011).CrossRefGoogle Scholar
  2. 2.
    J. He, M.G. Kanatzidis, and V.P. Dravid, Mater. Today 16, 166 (2013).CrossRefGoogle Scholar
  3. 3.
    S. Lo, J. He, K. Biswas, M.G. Kanatzidis, and V.P. Dravid, Adv. Funct. Mater. 22, 5175 (2012).CrossRefGoogle Scholar
  4. 4.
    Y. Noda, M. Orihashi, and I. Nishida, Mater. Trans. JIM 39, 602 (1998).CrossRefGoogle Scholar
  5. 5.
    Y. Dong, M.A. McGuire, A.-S. Malik, and F.J. DiSalvo, J. Solid State Chem. 182, 2602 (2009).CrossRefGoogle Scholar
  6. 6.
    M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).CrossRefGoogle Scholar
  7. 7.
    P.W. Zhu, Y.L. Hong, X. Wang, L.X. Chen, and Y. Imai, Chin. Phys. Lett. 27, 058102 (2010).CrossRefGoogle Scholar
  8. 8.
    W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).CrossRefGoogle Scholar
  9. 9.
    M. Zebarjadi, G. Joshi, G.H. Zhu, B. Yu, A. Minnich, Y.C. Lan, X.W. Wang, M. Dresselhaus, Z.F. Ren, and G. Chen, NanoLetters 11, 2225 (2011).CrossRefGoogle Scholar
  10. 10.
    K.E. Goodson, M.I. Flik, L.T. Su, and D.A. Antoniadis, J. Heat Transf. 117, 574 (1996).CrossRefGoogle Scholar
  11. 11.
    A. Majumdar, J.P. Carrejo, and J. Lai, Appl. Phys. Lett. 62, 2501 (1993).CrossRefGoogle Scholar
  12. 12.
    B.D. Boudreau, J. Raja, R.J. Hocken, S.R. Patterson, and J. Patten, Rev. Sci. Instrum. 68, 3096 (1997).CrossRefGoogle Scholar
  13. 13.
    D.A. Fletcher, D.S. Kino, and K.E. Goodson, Microscale Thermophys. Engine 7, 267 (2003).CrossRefGoogle Scholar
  14. 14.
    Y. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, and G.J. Snyder, Adv. Funct. Mater. 21, 241 (2011).CrossRefGoogle Scholar
  15. 15.
    I.D. Blum, D. Isheim, D.N. Seidman, J. He, J. Androulakis, K. Biswas, V.P. Dravid, and M.G. Kanatzidis, J. Electron. Mater. 41, 1583 (2012).CrossRefGoogle Scholar
  16. 16.
    S. Iwanaga and J. Schneider, J. Electron. Mater. 41, 1667 (2012).CrossRefGoogle Scholar
  17. 17.
    G. Nakamoto and Y. Nakabayashi, Intermetallics 32, 233 (2013).CrossRefGoogle Scholar
  18. 18.
    G.S. Polymeris, E. Hatzikraniotis, E.C. Stefanaki, E. Pavlidou, Th Kyratsi, K.M. Paraskevopoulos, and M.G. Kanatzidis, MRS Proc. 1543, 171 (2013). doi:10.1557/opl.2013.939.CrossRefGoogle Scholar
  19. 19.
    M.K. Sharov, Inorg. Mater. 45, 949 (2009).CrossRefGoogle Scholar
  20. 20.
    Ch. Papageorgiou, A. Delimitis, J. Giapintzakis, and Th. Kyratsi, (2013) (submitted for publication).Google Scholar
  21. 21.
    B.A. Akimov, B.A. Nikorich, L.I. Ryabova, and N.A. Shirokova, Sov. Phys. Semiconduct. 23, 636 (1989).Google Scholar
  22. 22.
    M.V. Nikolic, K.M. Paraskevopoulos, E. Hatzikraniotis, N. Nikolic, S.S. Vujatovic, O.S. Aleksic, T. Zorba, Th Kyratsi, A. Menicanin, and P.M. Nikolic, AIP Conf. Proc. 1449, 143 (2012).CrossRefGoogle Scholar
  23. 23.
    S.N. Girard, ThC Chasapis, J. He, X. Zhou, E. Hatzikraniotis, C. Uher, K.M. Paraskevopoulos, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 5, 8716 (2012).CrossRefGoogle Scholar
  24. 24.
    J.R. Sootsman, H. Kong, C. Uher, J.J. D’Angelo, C.-I. Wu, T.P. Hogan, T. Caillat, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 47, 8618 (2008).CrossRefGoogle Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • E.C. Stefanaki
    • 1
  • G.S. Polymeris
    • 1
  • P.M. Nikolic
    • 2
  • Ch. Papageorgiou
    • 3
  • E. Pavlidou
    • 1
  • E. Hatzikraniotis
    • 1
  • Th. Kyratsi
    • 3
  • K.M. Paraskevopoulos
    • 1
  1. 1.Solid State Physics Section, Physics DepartmentAristotle University of ThessalonikiThessaloníkiGreece
  2. 2.Institute of Technical Sciences of SASABeogradSerbia
  3. 3.Department of Mechanical and Manufacturing EngineeringUniversity of CyprusNicosiaCyprus

Personalised recommendations