Skip to main content
Log in

All-Inkjet-Printed Bottom-Gate Thin-Film Transistors Using UV Curable Dielectric for Well-Defined Source-Drain Electrodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Technological restrictions of the inkjet printing technology for printed electronics can hinder its application potential, mainly due to the limited resolution and layer homogeneity in comparison to conventional manufacturing techniques for electronics. The manufacturing of active devices such as thin-film transistors with appropriate performance using printing technologies is still one of the current challenges towards industrial applications. This work demonstrates the application of an ultraviolet (UV) curable ink as insulating material for the gate dielectric. The advantage of the UV curable ink is its fast curing and the smooth surface enabling high resolution patterns on top of it. In this way, all-inkjet-printed organic thin-film transistors (OTFTs) were fabricated with silver electrodes, UV curable gate dielectric, and 6,13-bis(triisopropylsilylethynyl)pentacene for the active semiconductor layer. By fine tuning of processing parameters and pattern geometries, a stable channel length of about 10 μm was obtained in the bottom-gate configuration without the need of additional steps, suggesting a way to build low-cost all-inkjet-printed OTFTs with well-defined source-drain electrodes and fast UV curable dielectric without any additional steps. The inkjet-printed device is characterized by an electron mobility of 0.012 cm2 V−1 s−1 and on/off ratio of 103.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chung, J. Jang, J. Cho, C. Lee, S. Kwon, and Y. Hong, Jpn. J. Appl. Phys. 50, 03CB05 (2011).

    Article  Google Scholar 

  2. S. Forrest, Nature 428, 911 (2004).

    Article  Google Scholar 

  3. M. Berggren, D. Nilsson, and N. Robinson, Nat. Mater. 6, 3 (2007).

    Article  Google Scholar 

  4. S. Lee, M. Choi, S. Han, D. Choo, J. Jang, and S. Kwon, Org. Electron. 9, 721 (2008).

    Article  Google Scholar 

  5. D. Chung, W. Yun, S. Nam, S. Kim, C. Park, J. Park, S. Kwon, and Y. Kim, Appl. Phys. Lett. 94, 043303 (2009).

    Article  Google Scholar 

  6. B. Gans, P. Duineveld, and U. Schubert, Adv. Mater. 16, 204 (2004).

    Google Scholar 

  7. S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. List, Adv. Funct. Mater. 17, 311 (2007).

    Article  Google Scholar 

  8. J. Doggart, Y. Wu, and S. Zhu, Appl. Phys. Lett. 94, 163503 (2009).

    Article  Google Scholar 

  9. S. Ko, H. Pan, C. Grigoropoulos, C. Luscombe, J. Fréchet, and D. Poulikakos, Nanotechnology 18, 345202 (2007).

    Article  Google Scholar 

  10. D. Kim, S. Lee, S. Jeong, and J. Moon, Electrochem. Solid State Lett. 12, H195 (2009).

    Article  Google Scholar 

  11. S. Park, J. Anthony, and T. Jackson, IEEE Electron Device Lett. 28, 877 (2007).

    Article  Google Scholar 

  12. J. Kim, J. Jeong, H. Cho, C. Lee, S. Kim, S. Kwon, and Y. Hong, J. Phys. D Appl. Phys. 42, 115107 (2009).

    Article  Google Scholar 

  13. J. Hammerschmidt, F.M. Wolf, W.A. Goedel, and R.R. Baumann, Langmuir 28, 3063 (2012).

    Article  Google Scholar 

  14. S. Park, T. Jackson, J. Anthony, and D. Mourey, Appl. Phys. Lett. 91, 063514 (2007).

    Article  Google Scholar 

  15. W. Lee, D. Kim, Y. Jang, J. Cho, M. Hwang, Y. Park, Y. Kim, J. Han, and K. Cho, Appl. Phys. Lett. 90, 132106 (2007).

    Article  Google Scholar 

  16. C. Kim, S. Lee, E. Gomez, J. Anthony, and Y. Loo, Appl. Phys. Lett. 93, 103302 (2008).

    Article  Google Scholar 

  17. S. Steudel, S. De Vusser, S. De Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, Appl. Phys. Lett. 85, 4400 (2004).

    Article  Google Scholar 

  18. S. Park, D. Mourey, J. Han, J. Anthony, and T. Jackson, Org. Electron. 10, 486 (2009).

    Article  Google Scholar 

  19. J. Lim, H. Lee, W. Lee, and K. Cho, Adv. Funct. Mater. 19, 1515 (2009).

    Article  Google Scholar 

  20. J. Jang, S.H. Kim, J. Hwang, S. Nam, C. Yang, D.S. Chung, and C.E. Park, Appl. Phys. Lett. 95, 073302 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lanceros-Méndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, H.F., Sowade, E., Rocha, J.G. et al. All-Inkjet-Printed Bottom-Gate Thin-Film Transistors Using UV Curable Dielectric for Well-Defined Source-Drain Electrodes. J. Electron. Mater. 43, 2631–2636 (2014). https://doi.org/10.1007/s11664-014-3143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3143-0

Keywords

Navigation