Journal of Electronic Materials

, Volume 43, Issue 6, pp 2440–2443 | Cite as

Anisotropic Thermopower of the Kondo Insulator \(\hbox {CeRu}_4\hbox {Sn}_6\)

  • J. Hänel
  • H. Winkler
  • M. Ikeda
  • J. Larrea J.
  • V. Martelli
  • A. Prokofiev
  • E. Bauer
  • S. Paschen
Open Access
Article

Abstract

The intermetallic compound \(\hbox {CeRu}_4\hbox {Sn}_6\) has been tentatively classified as Kondo insulator. This class of material, especially non-cubic representatives, is not yet fully understood. Here we report thermopower measurements on single-crystalline \(\hbox {CeRu}_4\hbox {Sn}_6\) between 2 K and 650 K, along the main crystallographic directions. Large positive thermopower is observed in the directions along which the hybridization is strong and a Kondo insulating gap forms. A negative contribution to the thermopower dominates for the crystallographic \(c\) axis where hybridization is weak and metallicity prevails.

Keywords

Kondo insulator thermopower power factor anisotropic hybridization 

References

  1. 1.
    G. Aeppli and Z. Fisk, Comments Condens. Matter Phys. 16, 155 (1992)Google Scholar
  2. 2.
    H. Ikeda and K. Miyake, J. Phys. Soc. Jpn. 65, 1769 (1996)CrossRefGoogle Scholar
  3. 3.
    J. Moreno and P. Coleman, Physica B 259–261, 190 (1999)CrossRefGoogle Scholar
  4. 4.
    I. Das and E.V. Sampathkumaran, Phys. Rev. B 46, 4250 (1992)CrossRefGoogle Scholar
  5. 5.
    R. Pöttgen, R.-D. Hoffmann, E.V. Sampathkumaran, I. Das, B.D. Mosel, and R. Müllmann, J. Solid State Chem. 134, 326 (1997)CrossRefGoogle Scholar
  6. 6.
    H. Winkler, K.-A. Lorenzer, A. Prokofiev, and S. Paschen, J. Phys. Conf. Ser. 391, 012077 (2012)CrossRefGoogle Scholar
  7. 7.
    V. Guritanu, P. Wissgott, T. Weig, H. Winkler, J. Sichelschmidt, M. Scheffler, A. Prokofiev, S. Kimura, T. Iizuka, A.M. Strydom, M. Dressel, F. Steglich, K. Held, and S. Paschen, Phys. Rev. B 87, 115129 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Paschen, H. Winkler, T. Nezu, M. Kriegisch, G. Hilscher, J. Custers, A. Prokofiev, and A. Strydom, J. Phys. Conf. Ser. 200, 012156 (2010)CrossRefGoogle Scholar
  9. 9.
    E.M. Brüning, M. Brando, M. Baenitz, A. Bentien, A.M. Strydom, R.E. Walstedt, and F. Steglich, Phys. Rev. B 82, 125115 (2010)CrossRefGoogle Scholar
  10. 10.
    A.K. Bhattacharjee and B. Coqblin, Phys. Rev. B 13, 3441 (1976)CrossRefGoogle Scholar
  11. 11.
    M.R. Lees, B.R. Coles, E. Bauer, and N. Pillmayr, J. Phys. Condens. Matter 2, 6403 (1990)CrossRefGoogle Scholar
  12. 12.
    U. Koehler, P. Sun, N. Oeschler, T. Takabatake, S. Paschen, and F. Steglich, J. Phys. Conf. Ser. 150, 042096 (2009)CrossRefGoogle Scholar
  13. 13.
    T. Takabatake, T. Sasakawa, J. Kitagawa, T. Suemitsu, Y. Echizen, K. Umeo, M. Sera, and Y. Bando, Physica B 328, 53 (2003)CrossRefGoogle Scholar
  14. 14.
    D. Huo, J. Sakurai, O. Maruyama, T. Kuwai, and Y. Isikawa, J. Magn. Magn. Mater. 226–230, 202 (2001)CrossRefGoogle Scholar
  15. 15.
    A. Prokofiev, A. Sidorenko, K. Hradil, M. Ikeda, R. Svagera, M. Waas, H. Winkler, K. Neumaier, and S. Paschen, Nat. Mater. 12, 1096 (2013)CrossRefGoogle Scholar
  16. 16.
    Q. Jie, R. Hu, E. Bozin, A. Llobet, I. Zaliznyak, C. Petrovic, and Q. Li, Phys. Rev. B 86, 115121 (2012)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • J. Hänel
    • 1
  • H. Winkler
    • 1
  • M. Ikeda
    • 1
  • J. Larrea J.
    • 1
    • 2
  • V. Martelli
    • 1
  • A. Prokofiev
    • 1
  • E. Bauer
    • 1
  • S. Paschen
    • 1
  1. 1.Institute of Solid State PhysicsVienna University of TechnologyViennaAustria
  2. 2.Department of PhysicsUniversity of JohannesburgAuckland ParkSouth Africa

Personalised recommendations