Skip to main content

Reinvestigation of Thermoelectric Properties of n- and p-Type Ba8−d Au x Si46−xy Clathrate

Abstract

We have synthesized n- and p-type clathrates Ba8−d Au x Si46−xy with various Au contents (4.6 < x < 6.0) by arc-melting, annealing at 1173 K, and spark plasma sintering at 1073 K. The Au compositions found by wavelength-dispersive x-ray spectrometry for the synthesized samples were slightly lower than the nominal compositions. Ba7.8Au4.6Si41.4 and Ba7.7Au4.9Si41.1 samples showed n- and p-type conduction, respectively. According to the electron count (Ba2+)8Au(3−)5.33Si40.67, the clathrate composition with x = 5.33 is expected to be an intrinsic semiconductor. Our experimental results show that increase of the Au composition causes a transition from n-type to p-type conduction between x = 4.6 and 4.9. We have also calculated the band structures of the Ba8Au x Si46−x clathrate including a vacancy by ab initio calculation based on density functional theory with structure optimization. It was found that the vacancy behaves like an electron acceptor and the numbers of vacancies at 24k sites for the synthesized Ba8Au x Si46−xy clathrates can be estimated as ∼0.4 in a unit cell.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X.A. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  2. 2.

    S. Yamanaka, E. Enishi, H. Fukuoka, and M. Yasukawa, Inorg. Chem. 39, 56 (2000).

    Article  Google Scholar 

  3. 3.

    J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack, Phys. Rev. Lett. 82, 779 (1999).

    Article  Google Scholar 

  4. 4.

    C. Cros, M. Pouchard, and P. Hagenmuller, J. Solid State Chem. 2, 570 (1970).

    Article  Google Scholar 

  5. 5.

    H. Anno, H. Yamada, T. Nakabayashi, M. Hokazono, and R. Shirataki, J. Solid State Chem. 193, 94 (2012).

    Article  Google Scholar 

  6. 6.

    H. Anno, M. Hokazono, R. Shirataki, and Y. Nagami, J. Mater. Sci. 48, 2846 (2013).

    Article  Google Scholar 

  7. 7.

    N. Mugita, Y. Nakakohara, R. Teranishi, and S. Munetoh, J. Mater. Res. 26, 1857 (2011).

    Article  Google Scholar 

  8. 8.

    G. Cordier and P. Woil, J. Less-Common Met. 169, 291 (1991).

    Article  Google Scholar 

  9. 9.

    I. Zeiringer, M.X. Chen, A. Grytsiv, E. Bauer, R. Podloucky, H. Effenberger, and P. Rogl, Acta Mater. 60, 2324 (2012).

    Article  Google Scholar 

  10. 10.

    N. Jaussaud, P. Gravereau, S. Pechev, B. Chevalier, M. Menetrier, P. Dordor, R. Decourt, G. Goglio, C. Cros, and M. Pouchard, C. R. Chimie 8, 39 (2005).

    Article  Google Scholar 

  11. 11.

    C. Candolfi, U. Aydemir, M. Baitinger, N. Oeschler, F. Steglich, and Y. Grin, J. Appl. Phys. 111, 043706 (2012).

    Article  Google Scholar 

  12. 12.

    U. Aydemir, C. Candolfi, A. Ormeci, Y. Oztan, M. Baitinger, N. Oeschler, F. Steglich, and Y. Grin, Phys. Rev. B 84, 195137 (2011).

    Article  Google Scholar 

  13. 13.

    M. Saisho, L. Bin, Y. Nagatomo, Y. Nakakohara, R. Teranishi, and S. Munetoh, J. Phys. 379, 012009 (2012).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shinji Munetoh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Munetoh, S., Saisho, M., Oka, T. et al. Reinvestigation of Thermoelectric Properties of n- and p-Type Ba8−d Au x Si46−xy Clathrate. Journal of Elec Materi 43, 2430–2434 (2014). https://doi.org/10.1007/s11664-014-3118-1

Download citation

Keywords

  • Thermoelectric properties
  • Ba-Au-Si clathrate
  • vacancy
  • spark plasma sintering
  • ab initio calculation