Journal of Electronic Materials

, Volume 43, Issue 7, pp 2667–2675 | Cite as

Relationships Between Strain and Recombination in Intermediate Growth Stages of GaN

  • A. Arnatkevičiūtė
  • I. Reklaitis
  • A. Kadys
  • T. Malinauskas
  • S. Stanionytė
  • G. Juška
  • M. V. Rzheutski
  • R. Tomašiūnas


Using metalorganic chemical vapor deposition, we heteroepitaxially grew undoped gallium nitride epilayers on sapphire. Assessing the epilayers at different growth stages, we investigated changes in epilayer strain and the lifetime of minority nonequilibrium charge carriers. The in-plane compressive strain was evaluated by x-ray diffraction and bandgap photoluminescence. The epilayer thickness ranged from 200 nm (islets) to 3.5 μm (continuous structure). The carrier lifetimes, measured using a light-induced transient grating technique, revealed a correlation between strain and the density of edge-type threading dislocations. This dislocation density was 109 cm−2 to 1011 cm−2, corresponding to the dominant mechanism for nonradiative carrier recombination. How the carrier lifetime depended on the growth stage differed between the surface and interfacial measurements. On the surface side, the carrier lifetime increased monotonically up to ~500 ps with thickness; on the interface side, the lifetime changed little with thickness, except in the thickest sample, where the carrier lifetime increased with thickness. We attributed this behavior to defect healing aided by long-term annealing, leading to mutual lateral motion and annihilation of mixed threading dislocations.


Gallium nitride sapphire dislocation strain bandgap lifetime 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Böttcher, S. Einfeldt, S. Figge, R. Chierchia, H. Heinke, D. Hommel, and J.S. Speck, Appl. Phys. Lett. 78, 1976 (2001)CrossRefGoogle Scholar
  2. 2.
    A. Hushur, M.H. Manghnani, and J. Narayan, J. Appl. Phys. 106, 054317 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Einfeldt, T. Böttcher, S. Figge, and D. Hommel, J. Cryst. Growth 230, 357 (2001)CrossRefGoogle Scholar
  4. 4.
    T. Wang, T. Shirahama, H.B. Sun, H.X. Wang, J. Bai, S. Sakai, and H. Misawa, Appl. Phys. Lett. 76, 2220 (2000)CrossRefGoogle Scholar
  5. 5.
    W. Rieger, T. Metzger, H. Angerer, R. Dmitrov, O. Ambacher, and M. Stutzmann, Appl. Phys. Lett. 68, 970 (1996)CrossRefGoogle Scholar
  6. 6.
    D.G. Zhao, S.J. Xu, M.H. Xie, S.Y. Tong, and H. Yang, Appl. Phys. Lett. 83, 677 (2003)CrossRefGoogle Scholar
  7. 7.
    F.C. Wang, C.L. Cheng, Y.F. Chen, C.F. Huang, and C.C. Yang, Semicond. Sci. Technol. 22, 896 (2007)CrossRefGoogle Scholar
  8. 8.
    H.J. Park, C. Park, S. Yeo, S.W. Kang, M. Mastro, O. Kryliouk, and T.J. Anderson, Phys. Status Solidi C 2, 2446 (2005)CrossRefGoogle Scholar
  9. 9.
    R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, and K. Jarašiūnas, Appl. Phys. Lett. 83, 1157 (2003)CrossRefGoogle Scholar
  10. 10.
    J. Mickevičius, R. Aleksiejūnas, M.S. Shur, S. Sakalauskas, G. Tamulaitis, Q. Fareed, and R. Gaska, Appl. Phys. Lett. 86, 041910 (2005)CrossRefGoogle Scholar
  11. 11.
    J. Mickevičius, M.S. Shur, R.S.Q. Fareed, J.P. Zhang, R. Gaska, and G. Tamulaitis, Appl. Phys. Lett. 87, 241918 (2005)CrossRefGoogle Scholar
  12. 12.
    C. Kim, I.K. Robinson, J. Myoung, K. Shim, M.C. Yoo, and K. Kim, Appl. Phys. Lett. 69, 2358 (1996)CrossRefGoogle Scholar
  13. 13.
    T.Y. Tang, W.Y. Shiao, C.H. Lin, K.C. Shen, J.J. Huang, S.Y. Ting, T.C. Liu, C.C. Yang, C.L. Yao, J.H. Yeh, T.C. Hsu, W.C. Chen, H.C. Hsu, and L.C. Chen, J. Appl. Phys. 105, 023501 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski, J. Jun, S. Porowski, K. Pakula, J.M. Baranowski, C.T. Foxon, and T.S. Cheng, Appl. Phys. Lett. 69, 73 (1996)CrossRefGoogle Scholar
  15. 15.
    M.A. Moram and M.E. Vickers, Rep. Prog. Phys. 72, 036502 (2009)CrossRefGoogle Scholar
  16. 16.
    I.H. Lee, J.J. Lee, P. Kung, F.J. Sanchez, and M. Razeghi, Appl. Phys. Lett. 74, 102 (1999)CrossRefGoogle Scholar
  17. 17.
    K.J. Lethy, P.R. Edwards, C. Liu, P.A. Shields, D.W.E. Allsopp, and R.W. Martin, Semicond. Sci. Technol. 27, 085010 (2012)CrossRefGoogle Scholar
  18. 18.
    K. Wan, A.A. Porporati, G. Feng, H. Yang, and G. Pezzotti, Appl. Phys. Lett. 88, 251910 (2006)CrossRefGoogle Scholar
  19. 19.
    A. Cremades, L. Görgens, O. Ambacher, M. Stutzmann, and F. Scholz, Phys. Rev. B 61, 2812 (2000)CrossRefGoogle Scholar
  20. 20.
    I.H. Lee, I.H. Choi, C.R. Lee, and S.K. Noh, Appl. Phys. Lett. 71, 1359 (1997)CrossRefGoogle Scholar
  21. 21.
    A. Krost, A. Dadgar, F. Schulze, J. Bläsing, G. Strassburger, R. Clos, A. Diez, P. Veit, T. Hempel, and J. Christen, J. Cryst. Growth 275, 209 (2005)CrossRefGoogle Scholar
  22. 22.
    L.T. Romano, C.G. Van de Walle, J.W. Ager III, W. Götz, and R.S. Kern, J. Appl. Phys. 87, 7745 (2000)CrossRefGoogle Scholar
  23. 23.
    T. Malinauskas, K. Jarasiunas, S. Miasojedovas, S. Jursenas, B. Beaumont, and P. Gibart, Appl. Phys. Lett. 88, 202109 (2006)CrossRefGoogle Scholar
  24. 24.
    O. Manasreh, eds., III-Nitride Semiconductors: Electrical, Structural and Defects Properties (Amsterdam: Elsevier Science, 2000)Google Scholar
  25. 25.
    M.W. Cole, F. Ren, and S.J. Pearton, Appl. Phys. Lett. 71, 3004 (1997)CrossRefGoogle Scholar
  26. 26.
    W. Li and A. Li, J. Cryst. Growth 227–228, 415 (2001)CrossRefGoogle Scholar
  27. 27.
    S.K. Mathis, A.E. Romanov, L.F. Chen, G.E. Beltz, W. Pompe, and J.S. Pompe, Phys. Status Solidi A 179, 125 (2000)CrossRefGoogle Scholar
  28. 28.
    H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, Appl. Phys. Lett. 77, 2145 (2000)CrossRefGoogle Scholar
  29. 29.
    T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H.P. Strunk, Philos. Mag. A 77, 1013 (1998)CrossRefGoogle Scholar
  30. 30.
    R. Chierchia, T. Bötcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, J. Appl. Phys. 93, 8918 (2003)CrossRefGoogle Scholar
  31. 31.
    H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, Phys. Status Solidi A 176, 391 (1999)CrossRefGoogle Scholar
  32. 32.
    X.H. Wu, L.M. Brown, D. Kapolnek, S. Keller, B. Keller, S.P. DenBaars, and J.S. Speck, J. Appl. Phys. 80, 3228 (1996)CrossRefGoogle Scholar
  33. 33.
    K. Jarašiūnas, T. Malinauskas, S. Nargelas, V. Gudelis, J.V. Vaitkus, V. Soukhoveev, and A. Usikov, Phys. Status Solidi B 247, 1703 (2010)CrossRefGoogle Scholar
  34. 34.
    E.V. Lutsenko, A.L. Gurskii, V.N. Pavlovskii, G.P. Yablonskii, T. Malinauskas, K. Jarašiūnas, B. Schineller, and M. Heuken, Phys. Status Solidi C 3, 1935 (2006)CrossRefGoogle Scholar
  35. 35.
    G.M. Wu, C.C. Yen, B.H. Tsai, and H.W. Chien, Surf. Coatings Technol. 206, 801 (2011)CrossRefGoogle Scholar
  36. 36.
    I. Booker, L. Rahimzadeh Khoshroo, J.F. Woitok, V. Kaganer, C. Mauder, H. Behmenburg, J. Gruis, M. Heuken, H. Kalisch, and R.H. Jansen, Phys. Status Solidi C 7, 1787 (2010)CrossRefGoogle Scholar
  37. 37.
    Y.C. Zhang, Z.G. Xing, Z.G. Ma, Y. Chen, G.J. Ding, P.Q. Xu, C.M. Dong, H. Chen, and X.Y. Le, Sci. Chin. Phys. Mech. Astron. 53, 465 (2010)CrossRefGoogle Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • A. Arnatkevičiūtė
    • 1
  • I. Reklaitis
    • 1
  • A. Kadys
    • 1
  • T. Malinauskas
    • 1
  • S. Stanionytė
    • 1
  • G. Juška
    • 2
  • M. V. Rzheutski
    • 3
  • R. Tomašiūnas
    • 1
  1. 1.Institute of Applied ResearchVilnius UniversityVilniusLithuania
  2. 2.Department of Solid State ElectronicsVilnius UniversityVilniusLithuania
  3. 3.B.I. Stepanov Institute of Physics of NAS of BelarusMinskBelarus

Personalised recommendations