Skip to main content
Log in

Effect of Sintering Temperature on the Properties of Fused Silica Ceramics Prepared by Gelcasting

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fused silica ceramics were fabricated by gelcasting, by use of a low-toxicity NN-dimethylacrylamide gel system, and had excellent properties compared with those obtained by use of the low-toxicity 2-hydroxyethyl methacrylate and toxic acrylamide systems. The effect of sintering temperature on the microstructure, mechanical and dielectric properties, and thermal shock resistance of the fused silica ceramics was investigated. The results showed that sintering temperature has a critical effect. Use of an appropriate sintering temperature will promote densification and improve the strength, thermal shock resistance, and dielectric properties of fused silica ceramics. However, excessively high sintering temperature will greatly facilitate crystallization of amorphous silica and result in more cristobalite in the sample, which will cause deterioration of these properties. Fused silica ceramics sintered at 1275°C have the maximum flexural strength, as high as 81.32 MPa, but, simultaneously, a high coefficient of linear expansion (2.56 × 10−6/K at 800°C) and dramatically reduced residual flexural strength after thermal shock (600°C). Fused silica ceramics sintered at 1250°C have excellent properties, relatively high and similar flexural strength before (67.43 MPa) and after thermal shock (65.45 MPa), a dielectric constant of 3.34, and the lowest dielectric loss of 1.20 × 10−3 (at 1 MHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.W. Yan, L.Y. Shi, S. Yuan, Y. Zhao, J.H. Fang, and J. Zhao, Mater. Lett. 64, 1208 (2010).

    Article  Google Scholar 

  2. H. Xu, J.C. Liu, H.Y. Du, A.R. Guo, and Z.G. Hou, Chem. Eng. J. 183, 504 (2012).

    Article  Google Scholar 

  3. J.C. Han, L.Y. Hu, Y.M. Zhang, Z.H. Jiang, and Y.F. Zhou, Scr. Mater. 62, 431 (2010).

    Article  Google Scholar 

  4. S. Mishra, R. Mitra, and M. Vijayakumar, J. Alloys Compd. 504, 77 (2010).

    Google Scholar 

  5. S.H. Wang, W.L. Cui, X.F. Yang, and X.D. Yuan, Key Eng. Mater. 336, 1005 (2007).

    Article  Google Scholar 

  6. A.C. Young, O.O. Omatete, M.A. Janney, and P.A. Menchhofer, J. Am. Ceram. Soc. 74, 612 (1991).

    Article  Google Scholar 

  7. Y.C. Hu, Z.J. Wang, and J.Y. Lu, J. Non-cryst. Solids 354, 1285 (2008).

    Article  Google Scholar 

  8. K. Mohanta and P. Bhargava, J. Am. Ceram. Soc. 93, 2215 (2010).

    Article  Google Scholar 

  9. J. Chandradass, K.H. Kim, D. Bae, K. Prasad, G. Balachandar, S.A. Divya, and M. Balasubramanian, J. Eur. Ceram. Soc. 29, 2219 (2009).

    Article  Google Scholar 

  10. M. Bengisu and E. Yilmaz, Ceram. Int. 28, 431 (2002).

    Article  Google Scholar 

  11. M. Potoczek, Ceram. Int. 34, 661 (2008).

    Article  Google Scholar 

  12. Y. Li, Z.M. Guo, J.J. Hao, and S.B. Ren, J. Mater. Process. Technol. 208, 457 (2008).

    Article  Google Scholar 

  13. P. Bednarek, M. Szafran, Y. Sakka, and T. Mizerski, J. Eur. Ceram. Soc. 29, 875 (2009).

    Article  Google Scholar 

  14. Y. Zhang and Y.B. Cheng, J. Am. Ceram. Soc. 89, 2933 (2006).

    Google Scholar 

  15. T. Zhang, Z.Q. Zhang, J.X. Zhang, D.L. Jiang, and Q.L. Lin, Mater. Sci. Eng. A 443, 257 (2007).

    Article  Google Scholar 

  16. J. Guo, T. Qiu, J. Yang, Y.B. Feng, C. Zhang, W.P. Zhang, and T.H. Guo, Ceram. Int. 38, 2905 (2012).

    Article  Google Scholar 

  17. C. Zhang, T. Qiu, J. Yang, and J. Guo, Mater. Sci. Eng. A 539, 243 (2012).

    Article  Google Scholar 

  18. W. Wan, J. Yang, J.Z. Zeng, and T. Qiu, J. Non-Cryst. Solids 379, 229 (2013).

    Article  Google Scholar 

  19. W. Wan, J. Yang, J.Z. Zeng, L.C. Yao, and T. Qiu, Ceram. Int. 40, 1735 (2014).

    Article  Google Scholar 

  20. H. Yinnon and D.R. Uhlmann, J. Non-Cryst. Solids 54, 253 (1983).

    Article  Google Scholar 

  21. J.D. Walton, Am. Ceram. Soc. Bull. 53, 255 (1974).

    Google Scholar 

  22. J.H. Park, B.K. Kim, J.G. Park, and Y. Kim, J. Eur. Ceram. Soc. 21, 2669 (2001).

    Article  Google Scholar 

  23. R. Freer and F. Azough, J. Eur. Ceram. Soc. 28, 1433 (2008).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), IRT1146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, W., Huang, Ce., Yang, J. et al. Effect of Sintering Temperature on the Properties of Fused Silica Ceramics Prepared by Gelcasting. J. Electron. Mater. 43, 2566–2572 (2014). https://doi.org/10.1007/s11664-014-3112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3112-7

Keywords

Navigation