Journal of Electronic Materials

, Volume 43, Issue 10, pp 3733–3739 | Cite as

Formation of the Thermoelectric Candidate Chromium Silicide by Use of a Pack-Cementation Process

  • D. Stathokostopoulos
  • D. Chaliampalias
  • E. Tarani
  • A. Theodorakakos
  • V. Giannoulatou
  • G.S. Polymeris
  • E. Pavlidou
  • K. Chrissafis
  • E. Hatzikraniotis
  • K.M. Paraskevopoulos
  • G. Vourlias
Article

Abstract

Transition-metal silicides are reported to be good candidates for thermoelectric applications because of their thermal and structural stability, high electrical conductivity, and generation of thermoelectric power at elevated temperatures. Chromium disilicide (CrSi2) is a narrow-gap semiconductor and a potential p-type thermoelectric material up to 973 K with a band gap of 0.30 eV. In this work, CrSi2 was formed from Si wafers by use of a two-step, pack-cementation, chemical diffusion method. Several deposition conditions were used to investigate the effect of temperature and donor concentration on the structure of the final products. Scanning electron microscopy and x-ray diffraction analysis were performed for phase identification, and thermal stability was evaluated by means of thermogravimetric measurements. The results showed that after the first step, chromizing, the structure of the products was a mixture of several Cr–Si phases, depending on the donor (Cr) concentration during the deposition process. After the second step, siliconizing, the pure CrSi2 phase was formed as a result of Si enrichment of the initial Cr–Si phases. It was also revealed that this compound has thermoelectric properties similar to those reported elsewhere. Moreover, it was found to have exceptional chemical stability even at temperatures up to 1273 K.

Keywords

Thermoelectric materials chemical vapor deposition XRD SEM thermal stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abd El Qader, R. Venkat, R. Kumar, T. Hartmann, P. Ginobbi, N. Newman, and R. Singh, J. Thin Solid Films 040, 07 (2013).Google Scholar
  2. 2.
    F. Nava, T. Tien, and K.N. Tu, J. Appl. Phys. 57, 6 (1985).CrossRefGoogle Scholar
  3. 3.
    S. Perumal, S. Gorsse, U. Ail, R. Decourt, and A.M. Umarji, J. Electron. Mater. 42, 6 (2013).CrossRefGoogle Scholar
  4. 4.
    M.I. Fedorov and V.K. Zaitsev, Silicide Thermoelectrics: State of the Art and Prospects, in Modules, Systems, and Applications in Thermoelectrics, ed. D.M. Rowe (Boca Raton: Taylor & Francis Group, 2012), Google Scholar
  5. 5.
    T. Dasgupta and A.M. Umarji, J. Alloys Compd. 461, 292 (2008).CrossRefGoogle Scholar
  6. 6.
    D. Shinoda, S. Asanabe, and Y. Sasaki, J. Phys. Soc. Jpn. 19, 269 (1964).CrossRefGoogle Scholar
  7. 7.
    I. Nishida, J. Mater. Sci. 7, 1119 (1972).CrossRefGoogle Scholar
  8. 8.
    F.Y. Shiau, H.C. Cheng, and L.J. Chen, Appl. Phys. Lett. 45, 524 (1984).CrossRefGoogle Scholar
  9. 9.
    C. Heck, M. Kusaka, M. Hirai, M. Iwami, and Y. Yokota, Thin Solid Films 281/282, 94 (1996).CrossRefGoogle Scholar
  10. 10.
    A. Vantomme, M.-A. Nicolet, R.G. Long, J.E. Mahan, and F.S. Pool, Appl. Surf. Sci. 73, 146 (1993).CrossRefGoogle Scholar
  11. 11.
    R.W. Fathauer, P.J. Grunthaner, T.L. Lin, K.T. Chang, J.N. Mazur, and D.N. Jamieson, J. Vac. Sci. Technol. 6, 708 (1988).CrossRefGoogle Scholar
  12. 12.
    D.L. Zhang, J Mater Sci. 31, 895 (1996).CrossRefGoogle Scholar
  13. 13.
    D. Stathokostopoulos, D. Chaliampalias, E.C. Stefanaki, G. Polymeris, E. Pavlidou, K. Chrissafis, E. Hatzikraniotis, K.M. Paraskevopoulos, and G. Vourlias, Appl. Surf. Sci. 285, 417 (2013).CrossRefGoogle Scholar
  14. 14.
    D. Stathokostopoulos, D. Chaliampalias, E. Pavlidou, E. Hatzikraniotis, G. Stergioudis, K.M. Paraskevopoulos, and G. Vourlias, AIP 1449, 203 (2011).Google Scholar
  15. 15.
    H. Lange, M. Giehler, W. Henrion, F. Fenske, I. Sierber, and G. Oertel, Phys. Status Solidi 171, 63 (1992).CrossRefGoogle Scholar
  16. 16.
    U. Shreter, F.C.T. So, and M.A. Nicolet, J. Appl. Phys. 55, 10 (1984).CrossRefGoogle Scholar
  17. 17.
    JCPDS-ICDD, PC Powder Diffraction Files (2003).Google Scholar
  18. 18.
    A.B. Gokhale and G.J. Abbaschlan, Bull. Alloy Phase Diagr. 8, 475 (1987).Google Scholar
  19. 19.
    M.I. Fedorov and V.K. Zaitsev, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton: Taylor & Francis Group, 2012), Google Scholar
  20. 20.
    S. Karuppaiah, M. Beaudhuin, and R. Viennois, J. Solid State Chem. 199, 90 (2013).CrossRefGoogle Scholar
  21. 21.
    E. Mazzega, M. Michelini, and F. Nava, J. Phys. 17, 1135 (1987).CrossRefGoogle Scholar
  22. 22.
    I. Nishida and T. Sakata, J. Phys. Chem. Solids 39, 499 (1978).CrossRefGoogle Scholar
  23. 23.
    G. Vourlias, D. Chaliampalias, E. Pavlidou, G. Stergioudis, and K. Chrissafis, J. Therm. Anal. Calorim. 111, 49 (2013).CrossRefGoogle Scholar
  24. 24.
    D. Chaliampalias, G. Vourlias, E. Pavlidou, S. Skolianos, K. Chrissafis, and G. Stergioudis, Appl. Surf. Sci. 255, 3605 (2009).CrossRefGoogle Scholar
  25. 25.
    J. Lu, H. Yang, B. Liu, J. Han, and G. Zou, Mater. Chem. Phys. 59, 101 (1999).CrossRefGoogle Scholar
  26. 26.
    M. Bartur and M.-A. Nicolet, J. Electrochem. Soc. 131, 371 (1984).CrossRefGoogle Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • D. Stathokostopoulos
    • 1
  • D. Chaliampalias
    • 1
  • E. Tarani
    • 1
  • A. Theodorakakos
    • 1
  • V. Giannoulatou
    • 1
  • G.S. Polymeris
    • 1
  • E. Pavlidou
    • 1
  • K. Chrissafis
    • 1
  • E. Hatzikraniotis
    • 1
  • K.M. Paraskevopoulos
    • 1
  • G. Vourlias
    • 1
  1. 1.Department of PhysicsAristotle University of ThessalonikiThessaloníkiGreece

Personalised recommendations