Skip to main content
Log in

GaSb Thermophotovoltaic Cells Grown on GaAs Substrate Using the Interfacial Misfit Array Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present gallium antimonide (GaSb) p–i–n photodiodes for use as thermophotovoltaic (TPV) cells grown on gallium arsenide (100) substrates using the interfacial misfit array method. Devices were grown using molecular beam epitaxy and fabricated using standard microfabrication processes. X-ray diffraction was used to measure the strain, and current–voltage (IV) tests were performed to determine the photovoltaic properties of the TPV cells. Energy generation at low efficiencies was achieved, and device performance was critically analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.F. DeMeo and T.E. Vandervelde, MRS Proc. 1329 (2011).

  2. C. Shemelya and T.E. Vandervelde, J. Electron. Mater. 41, 928 (2012).

    Article  Google Scholar 

  3. C.M. Shemelya and T.E. Vandervelde, MRS Proc. 1208, 1208 (2011).

    Google Scholar 

  4. D.F. DeMeo and T.E. Vandervelde, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 29, 031401 (2011).

    Article  Google Scholar 

  5. D.L. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Amsterdam: Elsevier, 2007), p. 515.

    Google Scholar 

  6. Y.B. Bolkhovityanov and O.P. Pchelyakov, Phys. Usp. 51, 437 (2008).

    Article  Google Scholar 

  7. S.H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L.R. Dawson, and D.L. Huffaker, Appl. Phys. Lett. 88, 131911 (2006).

    Article  Google Scholar 

  8. A. Jallipalli, G. Balakrishnan, S.H.H. Huang, A. Khoshakhlagh, L.R.R. Dawson, and D.L.L. Huffaker, J. Cryst. Growth 303, 449 (2007).

    Article  Google Scholar 

  9. M. Mehta, G. Balakrishnan, S. Huang, A. Khoshakhlagh, A. Jallipalli, P. Patel, M.N. Kutty, L.R. Dawson, and D.L. Huffaker, Appl. Phys. Lett. 89, 211110 (2006).

    Article  Google Scholar 

  10. S. Huang, G. Balakrishnan, and D.L. Huffaker, J. Appl. Phys. 105, 103104 (2009).

    Article  Google Scholar 

  11. C. Downs and T.E. Vandervelde, Sensors (Basel) 13, 5054 (2013).

    Article  Google Scholar 

  12. T.E. Vandervelde and S. Krishna, J. Nanosci. Nanotechnol. 10, 1450 (2010).

    Article  Google Scholar 

  13. A. Barve, J. Shao, Y.D. Sharma, T.E. Vandervelde, K. Sankalp, S.J. Lee, S.K. Noh, and S. Krishna, IEEE J.␣Quantum Electron. 46, 1105 (2010).

    Article  Google Scholar 

  14. J.R. Andrews, S.R. Restaino, S.W. Teare, Y.D. Sharma, W.-Y. Jang, T.E. Vandervelde, J.S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, IEEE Trans. Electron Devices 58, 2022 (2011).

    Article  Google Scholar 

  15. R.V. Shenoi, J. Rosenberg, T.E. Vandervelde, O.J. Painte, and S. Krishna, IEEE J. Quantum Electron. 46, 1051 (2010).

    Article  Google Scholar 

  16. J. Rosenberg, R.V. Shenoi, T.E. Vandervelde, S. Krishna, and O. Painter, Appl. Phys. Lett. 95, 161101 (2009).

    Article  Google Scholar 

  17. J. Shao, T.E. Vandervelde, W.-Y. Jang, A. Stintz, and S. Krishna, 2008 8th IEEE Conference on Nanotechnology (IEEE, 2008), pp. 112–115.

  18. P. Vines, C.H. Tan, J.P.R. David, R.S. Attaluri, T.E. Vandervelde, S. Krishna, W.-Y. Jang, and M.M. Hayat, IEEE J. Quantum Electron. 47, 190 (2011).

    Article  Google Scholar 

  19. P. Vines, C.H. Tan, J.P.R. David, R.S. Attaluri, T.E. Vandervelde, and S. Krishna, SPIE Eur. Secur. Def., ed D.A. Huckridge and R.R. Ebert (Bellingham, WA: International Society for Optics and Photonics, 2008), pp. 71130J–71130J-7.

  20. S. Adachi, P. Capper, and S. Kasap, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (New York: Wiley, 2009).

    Book  Google Scholar 

  21. S. Huang, G. Balakrishnan, and D. Huffaker, Microsc. Microanal. 15, 1062 (2009).

    Article  Google Scholar 

  22. A. Jallipalli, G. Balakrishnan, S. Huang, T. Rotter, K. Nunna, B. Liang, L. Dawson, and D. Huffaker, Nanoscale Res. Lett. 4, 1458 (2009).

    Article  Google Scholar 

  23. C.J. Reyner, J. Wang, K. Nunna, A. Lin, B. Liang, M.S. Goorsky, and D.L. Huffaker, Appl. Phys. Lett. 99, 231906 (2011).

    Article  Google Scholar 

  24. K.C. Nunna, S.L. Tan, C.J. Reyner, A.R.J. Marshall, B. Liang, A. Jallipalli, J.P.R. David, and D.L. Huffaker, IEEE Photonics Technol. Lett. 24, 218 (2012).

    Article  Google Scholar 

  25. A. Jallipalli, M.N. Kutty, G. Balakrishnan, J. Tatebayashi, N. Nuntawong, S.H. Huang, L.R. Dawson, D.L. Huffaker, Z. Mi, and P. Bhattacharya, Electron. Lett. 43, 1198 (2007).

    Article  Google Scholar 

  26. F.Y. Soldatenkov, S.V. Sorokina, N.K. Timoshina, V.P. Khvostikov, Y.M. Zadiranov, M.G. Rastegaeva, and A.A. Usikova, Semiconductors 45, 1219 (2011).

    Article  Google Scholar 

  27. W.C. Riordan, R. Miller, J.M. Sherman, and J. Hicks, 1999 IEEE International Reliability Physics Symposium Proceedings. 37th Annual. (Cat. No. 99CH36296) (IEEE, 1999), pp. 1–11.

  28. P.S. Dutta, H.L. Bhat, and V. Kumar, J. Appl. Phys. 81, 5821 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by␣the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0806676 and NSF Grant No. ECCS-1055203. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF Award No. ECS-0335765. CNS is part of Harvard University. The Tufts Micro- and Nanofabrication Facility was also used for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Vandervelde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeMeo, D., Shemelya, C., Downs, C. et al. GaSb Thermophotovoltaic Cells Grown on GaAs Substrate Using the Interfacial Misfit Array Method. J. Electron. Mater. 43, 902–908 (2014). https://doi.org/10.1007/s11664-014-3029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3029-1

Keywords

Navigation