Skip to main content
Log in

Growth of GaN Crystals by the Na Flux Method Under a Temperature Gradient

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of temperature gradients on the growth of GaN crystals by the Na flux method were investigated. Yields of GaN pyramid crystals of up to 70% were obtained by use of temperature gradients of 40–70°C/cm and 7 MPa nitrogen pressure. The crystals were obtained by spontaneous nucleation growth. Introducing a moderately large temperature gradient can suppress formation of a hard polycrystalline surface layer at the gas–liquid interface and aid transfer of heat and solute, resulting in controllable GaN crystal growth and better yield of GaN crystals. The maximum size of GaN crystals with hexagonal pyramidal faces was approximately 3 mm. The full-width at half-maximum of the rocking curve measured for the \( \left( {10\bar 11} \right) \)x-ray diffraction peak was only 36 arcsec. A emission peak at approximately 365 nm was observed at room temperature by photoluminescence spectroscopy. Characterization suggested the GaN crystals were of good crystalline quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Van Vechten, Phys. Rev. B 7, 1479 (1973).

    Article  Google Scholar 

  2. J. Karpiński, J. Jun, and S. Porowski, J. Cryst. Growth 66, 1 (1984).

    Article  Google Scholar 

  3. Y. Mori, M. Imade, K. Murakami, H. Takazawa, H. Imabayashi, Y. Todoroki, K. Kitamoto, M. Maruyama, M. Yoshimura, Y. Kitaoka, and T. Sasaki, J. Cryst. Growth 350, 72 (2012).

    Article  Google Scholar 

  4. J. Karpinski and S. Porowski, J. Cryst. Growth 66, 11 (1984).

    Article  Google Scholar 

  5. I. Grzegory, J. Phys. Condens. Matter 14, 11055 (2002).

    Article  Google Scholar 

  6. R. Dwilinski, R. Doradzinski, J. Garczynski, L.P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, J. Cryst. Growth 310, 3911 (2008).

    Article  Google Scholar 

  7. H. Yamane, M. Shimada, S.J. Clarke, and F.J. DiSalvo, Chem. Mater. 9, 413 (1997).

    Article  Google Scholar 

  8. F. Kawamura, H. Umeda, M. Morishita, M. Kawahara, M. Yoshimura, Y. Mori, T. Sasaki, and Y. Kitaoka, Jpn. J. Appl. Phys. Part 2 45, 1136 (2006).

    Article  Google Scholar 

  9. F. Kawamura, M. Morishita, M. Tanpo, M. Imade, M. Yoshimura, Y. Kitaoka, Y. Mori, and T. Sasaki, J. Cryst. Growth 310, 3946 (2008).

    Article  Google Scholar 

  10. M. Imade, Y. Hirabayashi, Y. Konishi, H. Ukegawa, N. Miyoshi, M. Yoshimura, T. Sasaki, Y. Kitaoka, and Y. Mori, Appl. Phys. Express 3, 075501 (2010).

    Article  Google Scholar 

  11. H. Yamane, D. Kinno, M. Shimada, and F.J. Disalvo, J. Ceram. Soc. Jpn. 107, 925 (1999).

    Article  Google Scholar 

  12. H. Yamane, D. Kinno, M. Shimada, T. Sekiguchi, and F.J. Disalvo, J. Mater. Sci. 35, 801 (2000).

    Article  Google Scholar 

  13. M. Aoki, H. Yamane, M. Shimada, T. Sekiguchi, T. Hanada, T. Yao, S. Sarayama, and F.J. DiSalvo, J. Cryst. Growth 218, 7 (2000).

    Article  Google Scholar 

  14. Y.T. Song, X.L. Chen, W.J. Wang, W.X. Yuan, Y.G. Cao, and X. Wu, J. Cryst. Growth 260, 327 (2004).

    Article  Google Scholar 

  15. S. Sarayama and H. Iwata, Ricoh Tech. Rep. 30, 9 (2004).

    Google Scholar 

  16. J.R. Clem, Phys. Rev. Lett. 20, 735 (1968).

    Article  Google Scholar 

  17. C.X. Shi, H.D. Li, and L. Zhou, Materials Science and Engineering Handbook (Beijing: Chemical Industry Press, 2004), pp. 1–59 (in Chinese).

  18. W.Q. Jie, Principle and Technology of Crystal Growth (Beijing: Science Press, 2010), pp. 178–179 (in Chinese).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenrong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Li, Z., Li, J. et al. Growth of GaN Crystals by the Na Flux Method Under a Temperature Gradient. J. Electron. Mater. 43, 1219–1225 (2014). https://doi.org/10.1007/s11664-014-2996-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-2996-6

Keywords

Navigation