Skip to main content
Log in

Effect of the Addition of B2O3 on the Density, Microstructure, Dielectric, Piezoelectric and Ferroelectric Properties of K0.5Na0.5NbO3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Boron oxide (B2O3) addition to pre-reacted K0.5Na0.5NbO3 (KNN) powders facilitated swift densification at relatively low sintering temperatures which was believed to be a key to minimize potassium and sodium loss. The base KNN powder was synthesized via solid-state reaction route. The different amounts (0.1–1 wt%) of B2O3 were-added, and ceramics were sintered at different temperatures and durations to optimize the amount of B2O3 needed to obtain KNN pellets with highest possible density and grain size. The 0.1 wt% B2O3-added KNN ceramics sintered at 1,100 °C for 1 h exhibited higher density (97 %). Scanning electron microscopy studies confirmed an increase in average grain size with increasing B2O3 content at appropriate temperature of sintering and duration. The B2O3-added KNN ceramics exhibited improved dielectric and piezoelectric properties at room temperature. For instance, 0.1 wt% B2O3-added KNN ceramic exhibited d 33 value of 116 pC/N which is much higher than that of pure KNN ceramics. Interestingly, all the B2O3-added (0.1–1 wt%) KNN ceramics exhibited polarization–electric field (P vs. E) hysteresis loops at room temperature. The remnant polarization (P r) and coercive field (E c) values are dependent on the B2O3 content and crystallite size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Damjanovic, N. Klein, J. Li, and V.P. Khonskyy, Funct. Mater. Lett. 4, 5 (2010).

    Article  Google Scholar 

  2. T.R. Shrout and S.J. Zhang, J. Eletroceram. 19, 111 (2007).

    Google Scholar 

  3. J. Rodel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009).

    Article  Google Scholar 

  4. M. Dermatin Maeder, D. Damjanovic, and N. Setter, J. Eletroceram. 13, 385 (2004).

    Article  Google Scholar 

  5. L. Egerton and D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959).

    Article  Google Scholar 

  6. R. Zuo, J. Rodel, R. Chen, and L. tu Li, J. Am. Ceram. Soc. 89, 2010 (2006).

    Article  Google Scholar 

  7. Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004).

    Article  Google Scholar 

  8. J. Wu, D. Xiao, Y. Wang, J. Zhu, P. Yu, and Y. Jiang, J. Appl. Phys. 102, 114113 (2007).

    Article  Google Scholar 

  9. E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter, Appl. Phys. Lett. 87, 182905 (2005).

    Article  Google Scholar 

  10. H.-Y. Park, C.-W. Ahn, H.-C. Song, J.-H. Lee, S. Nahm, K. Uchino, H.-G. Lee, and H.-J. Lee, Appl. Phys. Lett. 89, 062906 (2006).

    Article  Google Scholar 

  11. K. Wang and J.-F. Li, J. Adv. Ceram. 1, 24 (2012).

    Article  Google Scholar 

  12. W.D. Kingery, J. Appl. Phys. 30, 301 (1959).

    Article  Google Scholar 

  13. B. Shri Prakash and K.B.R. Varma, J. Solid State Chem. 180, 1918 (2007).

    Article  Google Scholar 

  14. T. Ogawa, K. Ishii, T. Matsumoto, and T. Nishina, Jpn. J. Appl. Phys. 51, 09LD03-1 (2012).

    Google Scholar 

  15. J. Ryu, J.J. Choi, B.D. Hahn, D.S. Park, W.H. Yoon, and K.Y. Kim, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2510 (2007).

    Article  Google Scholar 

  16. T. Skidmore and S. Milne, J. Mater. Res. 22, 2265 (2007).

    Article  Google Scholar 

  17. T.A. Skidmore, T. Stevenson, T.P. Comyn, and S.J. Milne, Key Eng. Mater. 368, 1886 (2008).

    Article  Google Scholar 

  18. R. Lopez-Juarez, O. Novelo-Peralta, F. Gonzalez-Garcia, F. Rubio-Marcos, and M.-E. Villafuerte-Castrejon, J. Eur. Ceram. Soc. 31, 1861 (2011).

    Article  Google Scholar 

  19. K. Uchino, Ferroelectric Devices (New York: Marcel Dekker, 2000), p. 94.

    Google Scholar 

  20. H.T. Martirena and J.C. Burfoot, J. Phys. C Solid State Phys. 7, 3182 (1974).

    Article  Google Scholar 

  21. S.E. Park and T. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. R. Varma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharathi, P., Varma, K.B.R. Effect of the Addition of B2O3 on the Density, Microstructure, Dielectric, Piezoelectric and Ferroelectric Properties of K0.5Na0.5NbO3 Ceramics. J. Electron. Mater. 43, 493–505 (2014). https://doi.org/10.1007/s11664-013-2939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2939-7

Key words

Navigation