Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Methods for Enhancing the Thermal Durability of High-Temperature Thermoelectric Materials

  • 413 Accesses

  • 16 Citations

Abstract

Thermoelectric materials, for example skutterudites and magnesium silicides, are being investigated as promising materials for medium-to-high-temperature waste heat recovery in transport and in industry. A crucial aspect of the success of a thermoelectric material is its stability over time when exposed to rapid heating and cooling. In this work different aspects of the degradation of these thermoelectric materials at high temperature were examined. Initial thermal durability was studied, and several candidate coatings were evaluated to enhance durability by protecting the materials from oxidation and sublimation during thermal cycles in air for up to 500 h and up to 873 K. The samples were characterized by SEM and EDS. The results showed it is possible to reduce degradation of the thermoelectric material without compromising overall thermoelectric efficiency.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L.L.N. Library, U.S. Energy Flow (2011) [cited 15 April 2013]. Available from: https://flowcharts.llnl.gov/energy.html#2011.

  2. 2.

    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

  3. 3.

    H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).

  4. 4.

    X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

  5. 5.

    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

  6. 6.

    R. Hara, S. Inoue, H.T. Kaibe, and S. Sano, J. Alloy. Compd. 349, 297 (2003).

  7. 7.

    J. Leszczynski, A. Malecki, and K.T. Wojciechowski, International Conference on Thermoelectrics (2007).

  8. 8.

    E. Godlewska, K. Zawadzka, A. Adamczyk, M. Mitoraj, and K. Mars, Oxid. Met. 74, 113 (2010).

  9. 9.

    D. Zhao, C. Tian, S. Tang, Y. Liu, and L. Chen, J. Alloy. Compd. 504, 552 (2010).

  10. 10.

    J. Leszczynski, K. Wojciechowski, and A. Malecki, J. Therm. Anal. Calorim. 105, 211 (2011).

  11. 11.

    D. Zhao, C. Tian, Y. Liu, C. Zhan, and L. Chen, J. Alloy. Compd. 509, 3166 (2011).

  12. 12.

    X. Xia, P. Qiu, X. Shi, X. Li, X. Huang, and L. Chen, J. Electron. Mater. 41, 2225 (2012).

  13. 13.

    M. Riffel and J. Schilz, International Conference on Thermoelectrics (1997), pp. 283–286.

  14. 14.

    J.-I. Tani, M. Takahashi, and H. Kido, J. Alloy. Compd. 488, 346 (2009).

  15. 15.

    H. Scherrer, F. Gascoin, Q. Recour, D. Berthebaud, P. Zwolenski, L. Chaput, B. Wiendlocha, J. Tobola, and J. Bourgeois, Funct. Mater. Lett. 06, 1340005 (2013).

  16. 16.

    J.S. Sakamoto, G.J. Snyder, T. Calliat, J.-P.S. Fleurial, M. Jones, and J.-A. Palk, US 7,461,512 B2, 9 Dec 2008.

  17. 17.

    J. Salvador, J. Cho, Z. Ye, J. Moczygemba, A. Thompson, J. Sharp, J. König, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A. Wereszczak, and G. Meisner, J. Electron. Mater. 42, 1389 (2012).

  18. 18.

    H.H. Saber and M.S. El-Genk, Energy Convers. Manag. 48, 1383 (2007).

  19. 19.

    H.H. Saber, M.S. El-Genk, and T. Caillat, Energy Convers. Manag. 48, 555 (2007).

  20. 20.

    E. Godlewska, K. Zawadzka, R. Gajerski, M. Mitoraj, and K. Mars, Ceram. Mater. 62, 490 (2010).

  21. 21.

    E. Godlewska, K. Zawadzka, K. Mars, R. Mania, K. Wojciechowski, and A. Opoka, Oxid. Met. 74, 205 (2010).

  22. 22.

    P. Wei, C.-L. Dong, W.-Y. Zhao, and Q.-J. Zhang, J. Inorg. Mater. 25, 577 (2010).

  23. 23.

    H. Dong, X. Li, X. Huang, Y. Zhou, W. Jiang, and L. Chen, Ceram. Int. 39, 4551 (2013).

  24. 24.

    H. Dong, X. Li, Y. Tang, J. Zou, X. Huang, Y. Zhou, W. Jiang, G.-J. Zhang, and L. Chen, J. Alloy. Compd. 527, 247 (2012).

  25. 25.

    K. Zawadzka, E. Godlewska, K. Mars, and M. Nocun, AIP Conf. Proc. 1449, 231 (2012).

Download references

Author information

Correspondence to Gunstein Skomedal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skomedal, G., Kristiansen, N.R., Engvoll, M. et al. Methods for Enhancing the Thermal Durability of High-Temperature Thermoelectric Materials. Journal of Elec Materi 43, 1946–1951 (2014). https://doi.org/10.1007/s11664-013-2917-0

Download citation

Keywords

  • Skutterudite
  • magnesium silicide
  • oxidation
  • durability
  • coating