Advertisement

Journal of Electronic Materials

, Volume 43, Issue 6, pp 1946–1951 | Cite as

Methods for Enhancing the Thermal Durability of High-Temperature Thermoelectric Materials

  • Gunstein SkomedalEmail author
  • Nils R. Kristiansen
  • Marianne Engvoll
  • Hugh Middleton
Article

Abstract

Thermoelectric materials, for example skutterudites and magnesium silicides, are being investigated as promising materials for medium-to-high-temperature waste heat recovery in transport and in industry. A crucial aspect of the success of a thermoelectric material is its stability over time when exposed to rapid heating and cooling. In this work different aspects of the degradation of these thermoelectric materials at high temperature were examined. Initial thermal durability was studied, and several candidate coatings were evaluated to enhance durability by protecting the materials from oxidation and sublimation during thermal cycles in air for up to 500 h and up to 873 K. The samples were characterized by SEM and EDS. The results showed it is possible to reduce degradation of the thermoelectric material without compromising overall thermoelectric efficiency.

Keywords

Skutterudite magnesium silicide oxidation durability coating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.L.N. Library, U.S. Energy Flow (2011) [cited 15 April 2013]. Available from: https://flowcharts.llnl.gov/energy.html#2011.
  2. 2.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  3. 3.
    H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).CrossRefGoogle Scholar
  4. 4.
    X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  5. 5.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).CrossRefGoogle Scholar
  6. 6.
    R. Hara, S. Inoue, H.T. Kaibe, and S. Sano, J. Alloy. Compd. 349, 297 (2003).CrossRefGoogle Scholar
  7. 7.
    J. Leszczynski, A. Malecki, and K.T. Wojciechowski, International Conference on Thermoelectrics (2007).Google Scholar
  8. 8.
    E. Godlewska, K. Zawadzka, A. Adamczyk, M. Mitoraj, and K. Mars, Oxid. Met. 74, 113 (2010).CrossRefGoogle Scholar
  9. 9.
    D. Zhao, C. Tian, S. Tang, Y. Liu, and L. Chen, J. Alloy. Compd. 504, 552 (2010).CrossRefGoogle Scholar
  10. 10.
    J. Leszczynski, K. Wojciechowski, and A. Malecki, J. Therm. Anal. Calorim. 105, 211 (2011).CrossRefGoogle Scholar
  11. 11.
    D. Zhao, C. Tian, Y. Liu, C. Zhan, and L. Chen, J. Alloy. Compd. 509, 3166 (2011).CrossRefGoogle Scholar
  12. 12.
    X. Xia, P. Qiu, X. Shi, X. Li, X. Huang, and L. Chen, J. Electron. Mater. 41, 2225 (2012).CrossRefGoogle Scholar
  13. 13.
    M. Riffel and J. Schilz, International Conference on Thermoelectrics (1997), pp. 283–286.Google Scholar
  14. 14.
    J.-I. Tani, M. Takahashi, and H. Kido, J. Alloy. Compd. 488, 346 (2009).CrossRefGoogle Scholar
  15. 15.
    H. Scherrer, F. Gascoin, Q. Recour, D. Berthebaud, P. Zwolenski, L. Chaput, B. Wiendlocha, J. Tobola, and J. Bourgeois, Funct. Mater. Lett. 06, 1340005 (2013).Google Scholar
  16. 16.
    J.S. Sakamoto, G.J. Snyder, T. Calliat, J.-P.S. Fleurial, M. Jones, and J.-A. Palk, US 7,461,512 B2, 9 Dec 2008.Google Scholar
  17. 17.
    J. Salvador, J. Cho, Z. Ye, J. Moczygemba, A. Thompson, J. Sharp, J. König, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A. Wereszczak, and G. Meisner, J. Electron. Mater. 42, 1389 (2012).CrossRefGoogle Scholar
  18. 18.
    H.H. Saber and M.S. El-Genk, Energy Convers. Manag. 48, 1383 (2007).CrossRefGoogle Scholar
  19. 19.
    H.H. Saber, M.S. El-Genk, and T. Caillat, Energy Convers. Manag. 48, 555 (2007).CrossRefGoogle Scholar
  20. 20.
    E. Godlewska, K. Zawadzka, R. Gajerski, M. Mitoraj, and K. Mars, Ceram. Mater. 62, 490 (2010).Google Scholar
  21. 21.
    E. Godlewska, K. Zawadzka, K. Mars, R. Mania, K. Wojciechowski, and A. Opoka, Oxid. Met. 74, 205 (2010).CrossRefGoogle Scholar
  22. 22.
    P. Wei, C.-L. Dong, W.-Y. Zhao, and Q.-J. Zhang, J. Inorg. Mater. 25, 577 (2010).CrossRefGoogle Scholar
  23. 23.
    H. Dong, X. Li, X. Huang, Y. Zhou, W. Jiang, and L. Chen, Ceram. Int. 39, 4551 (2013).Google Scholar
  24. 24.
    H. Dong, X. Li, Y. Tang, J. Zou, X. Huang, Y. Zhou, W. Jiang, G.-J. Zhang, and L. Chen, J. Alloy. Compd. 527, 247 (2012).CrossRefGoogle Scholar
  25. 25.
    K. Zawadzka, E. Godlewska, K. Mars, and M. Nocun, AIP Conf. Proc. 1449, 231 (2012).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Gunstein Skomedal
    • 1
    • 3
    Email author
  • Nils R. Kristiansen
    • 1
  • Marianne Engvoll
    • 2
  • Hugh Middleton
    • 1
  1. 1.University of AgderKristiansandNorway
  2. 2.Tegma ASKristiansandNorway
  3. 3.Department of Engineering SciencesJon Lilletuns vei 9GrimstadNorway

Personalised recommendations