Advertisement

Journal of Electronic Materials

, Volume 43, Issue 6, pp 1896–1904 | Cite as

Power Factor Enhancement by Inhomogeneous Distribution of Dopants in Two-Phase Nanocrystalline Systems

  • Neophytos Neophytou
  • Xanthippi Zianni
  • Hans Kosina
  • Stefano Frabboni
  • Bruno Lorenzi
  • Dario Narducci
Article

Abstract

In this work, we describe a novel idea that allows for high thermoelectric power factors in two-phase materials that are heavily doped with an inhomogeneous distribution of dopants. We show that a concurrent increase of the electrical conductivity and Seebeck coefficient and a consequent increase of the power factor can be achieved in such systems. To explain the concept, we employ a semiclassical one-dimensional model that considers both electron and phonon transport through a series connection of two-phases of the material. We discuss microscopic characteristics of the material and the formation of the two phases (grains and grain boundaries in our case) by the inhomogeneous distribution of dopants in the polycrystalline material. Our theoretical investigation reveals that: (1) the improvement in the Seebeck coefficient can be attributed to carrier filtering due to the energy barriers at the grain boundaries, and to the difference in the lattice thermal conductivity of the grains and grain boundaries, and (2) the improvement in the electrical conductivity is a result of a high Fermi level in the grains. This allows high energy carriers to contribute to transport, which increases the impurity scattering limited mean-free-path, and increases the conductivity in the grains and thus in the whole material. Such an unexpected concurrent increase of the electrical conductivity and the Seebeck coefficient was recently observed in heavily boron-doped polycrystalline silicon of grain sizes <100 nm in which a silicon-boride phase is formed around the grain boundaries. We provide a simple 1D model that explains the behavior of this system, indicating processes that can take place in heavily doped nanocrystalline materials.

Keywords

Thermoelectric transport properties thermoelectric power factor barrier nanocrystalline model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Narducci, E. Selezneva, A. Arcari, G.F. Cerofolini, E. Romano, R. Tonini, and G. Ottaviani, MRS Proceedings, 1314, mrsf10-1314-ll05-16 (2011). doi: 10.1557/opl.2011.511.
  2. 2.
    D. Narducci, E. Selezneva, G.F. Cerofolini, E. Romano, R. Tonini, and G. Ottaviani, Proceedings of the 8th European Conference on Thermoelectrics (22–24 September, 2010, Como, Italy), pp. 141–146.Google Scholar
  3. 3.
    D. Narducci, E. Selezneva, G.F. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19 (2012).CrossRefGoogle Scholar
  4. 4.
    D. Narducci, E. Selezneva, G.F. Cerofolini, S. Frabboni, and G. Ottaviani, AIP Conf. Proc. 1449, 311 (2012). doi: 10.1063/1.4731559.CrossRefGoogle Scholar
  5. 5.
    N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).CrossRefGoogle Scholar
  6. 6.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597–602 (2001).CrossRefGoogle Scholar
  7. 7.
    L.D. Zhao, S.H. Lo, J.Q. He, L. Hao, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476–20487 (2011).CrossRefGoogle Scholar
  8. 8.
    A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.-K. Yu, W.A.G. III, and J.R. Heath, Nature 451, 168–171 (2008).CrossRefGoogle Scholar
  9. 9.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163–168 (2008).CrossRefGoogle Scholar
  10. 10.
    J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279–4283 (2010).CrossRefGoogle Scholar
  11. 11.
    K. Nielsch, J. Bachmann, J. Kimling, and H. Boettner, Adv. Energy Mater. 1, 713–731 (2011).CrossRefGoogle Scholar
  12. 12.
    C.J. Vineis, A. Shakouri, A. Majumdar, and M.C. Kanatzidis, Adv. Mater. 22, 3970–3980 (2010).CrossRefGoogle Scholar
  13. 13.
    F. Song, L. Wu, and S. Liang, Nanotechnology 23, 085401 (2012).CrossRefGoogle Scholar
  14. 14.
    Y. Yang, D.K. Taggart, M.H. Cheng, J.C. Hemminger, and R.M. Penner, J. Phys. Chem. Lett. 1, 3004–3011 (2010).CrossRefGoogle Scholar
  15. 15.
    W. Xu, Y. Shi, and H. Hadim, Nanotechnology 21, 395303 (2010).CrossRefGoogle Scholar
  16. 16.
    H. Ohta, et al., Nat. Mater. 6, 129–134 (2007).CrossRefGoogle Scholar
  17. 17.
    H. Ikeda and F. Salleh, Appl. Phys. Lett. 96, 012106 (2010).CrossRefGoogle Scholar
  18. 18.
    C.M. Jaworski, V. Kulbachinskii, and J.P. Heremans, Phys. Rev. B 80, 125208 (2009).CrossRefGoogle Scholar
  19. 19.
    D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004).CrossRefGoogle Scholar
  20. 20.
    N. Neophytou and H. Kosina, Phys. Rev. B 83, 245305 (2011).CrossRefGoogle Scholar
  21. 21.
    T.J. Scheidemantel, C.A. Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Phys. Rev. B 68, 125210 (2003).CrossRefGoogle Scholar
  22. 22.
    R. Kim, S. Datta, and M.S. Lundstrom, J. Appl. Phys. 105, 034506 (2009).CrossRefGoogle Scholar
  23. 23.
    M. Lundstrom, Fundamentals of Carrier Transport (Cambridge: Cambridge University Press, 2000).CrossRefGoogle Scholar
  24. 24.
    H. Kosina and G.K. Grujin, Solid State Electron. 42, 331–338 (1998).CrossRefGoogle Scholar
  25. 25.
    A.T. Ramu, L.E. Cassels, N.H. Hackman, H. Lu, J.M.O. Zide, and J.E. Bowels, J. Appl. Phys. 107, 083707 (2010).CrossRefGoogle Scholar
  26. 26.
    C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).CrossRefGoogle Scholar
  27. 27.
    Ioffe Physiotechnical Institute, Physical Properties of Semiconductors (St. Petersburg, Russia: Russian Federation, 1998–2001), http://www.ioffe.ru/SVA/.
  28. 28.
    G. Masetti, M. Severi, and S. Solmi, IEEE Trans. Electr. Dev. 30, 764 (1983).CrossRefGoogle Scholar
  29. 29.
    J.W. Orton and M.J. Powell, Rep. Prog. Phys. 43, 1263 (1980).CrossRefGoogle Scholar
  30. 30.
    J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975).CrossRefGoogle Scholar
  31. 31.
    F.V. Farmakis, J. Brini, G. Kamarinos, C.T. Angelis, C.A. Dimitriadis, and M. Miyasaka, IEEE Trans. Electr. Dev. 48, 701 (2001).CrossRefGoogle Scholar
  32. 32.
    M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225–2230 (2011).CrossRefGoogle Scholar
  33. 33.
    Y. Nishio and T. Hirano, Jpn. J. Appl. Phys. 36, 170–174 (1997).CrossRefGoogle Scholar
  34. 34.
    R. Kim and M. Lundstrom, J. Appl. Phys. 110, 034511 (2011).CrossRefGoogle Scholar
  35. 35.
    M. Lundstrom, Electr. Dev. Lett. 22, 293–295 (2001).CrossRefGoogle Scholar
  36. 36.
    J.M. Ziman, Electrons and Phonons (Cambridge: Cambridge University Press, 2001).CrossRefGoogle Scholar
  37. 37.
    P. Chantrenne, J.L. Barrat, X. Blase, and J.D. Gale, J. Appl. Phys. 97, 104318 (2005).CrossRefGoogle Scholar
  38. 38.
    M.G. Holland, Phys. Rev. 134, A471 (1964).CrossRefGoogle Scholar
  39. 39.
    S. Duguay, A. Colin, D. Mathiot, P. Morin, and D. Blavette, J. Appl. Phys. 108, 034911 (2010).CrossRefGoogle Scholar
  40. 40.
    S. Duguay, T. Philippe, F. Cristiano, and D. Blavette, Appl. Phys. Lett. 97, 242104 (2010).CrossRefGoogle Scholar
  41. 41.
    O.C. Miredin, F. Cristiano, P.-F. Fazzini, D. Mangelinck, and D. Blavette, Thin Solid Films 534, 62–65 (2013).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Neophytos Neophytou
    • 1
    • 2
  • Xanthippi Zianni
    • 3
    • 4
  • Hans Kosina
    • 1
  • Stefano Frabboni
    • 5
    • 6
  • Bruno Lorenzi
    • 7
  • Dario Narducci
    • 7
    • 8
  1. 1.Institute for MicroelectronicsTechnical University of ViennaViennaAustria
  2. 2.School of EngineeringUniversity of WarwickCV4 7ALUK
  3. 3.Department of Aircraft TechnologyTechnological Educational Institution of Sterea ElladaPsachnaGreece
  4. 4.Department of Microelectronics, IAMPPNMNCSR ‘Demokritos’AthensGreece
  5. 5.Department of Physics, Computer Science and MathematicsUniversity of Modena and Reggio EmiliaModenaItaly
  6. 6.CNR-Institute of Nanoscience-S3ModenaItaly
  7. 7.Department of Materials ScienceUniversity of Milano BicoccaMilanItaly
  8. 8.Consorzio DeltaTi ResearchMilanItaly

Personalised recommendations