Properties and Printability of Inkjet and Screen-Printed Silver Patterns for RFID Antennas


We report the modeling, and geometrical and electrical characterization, of inkjet and screen-printed patterns on different polymeric substrates for use as antennas in radio-frequency identification (RFID) applications. We compared the physical and electrical characteristics of two silver nanoparticle-based commercial inkjet-printable inks and one screen-printable silver paste, when deposited on polyimide (PI), polyethylene terephthalate (PET), and polyetherimide (PEI) substrates. First, the thickness of the inkjet-printed patterns was predicted by use of an analytical model based on printing conditions and ink composition. The predicted thickness was confirmed experimentally, and geometrical characterization of the lines was completed by measuring the root-mean-square roughness of the patterns. Second, direct-current electrical characterization was performed to identify the printing conditions yielding the lowest resistivity and sheet resistance. The minimum resistivity for the inkjet-printing method was 8.6 ± 0.8 μΩ cm, obtained by printing four stacked layers of one of the commercial inks on PEI, whereas minimum resistivity of 44 ± 7 μΩ cm and 39 ± 4 μΩ cm were obtained for a single layer of screen-printed ink on polyimide (PI) with 140 threads/cm mesh and 90 threads/cm mesh, respectively. In every case, these minimum values of resistivity were obtained for the largest tested thickness. Coplanar waveguide transmission lines were then designed and characterized to analyze the radio-frequency (RF) performance of the printed patterns; minimum transmission losses of 0.0022 ± 0.0012 dB/mm and 0.0016 ± 0.0012 dB/mm measured at 13.56 MHz, in the high-frequency (HF) band, were achieved by inkjet printing on PEI and screen printing on PI, respectively. At 868 MHz, in the ultra-high-frequency band, the minimum values of transmission loss were 0.0130 ± 0.0014 dB/mm for inkjet printing on PEI and 0.0100 ± 0.0014 dB/mm for screen printing on PI. Although the resistivity achieved is lower for inkjet printing than for screen printing, RF losses for inkjetted patterns were larger than for screen-printed patterns, because thicker layers were obtained by screen printing. Finally, several coil inductors for the HF band were also fabricated by use of both printing techniques, and were used as antennas for semi-passive smart RFID tags on plastic foil capable of measuring temperature and humidity.

This is a preview of subscription content, access via your institution.


  1. 1.

    K. Finkenzeller, RFID Handbook, 2nd ed. (New York NY: Wiley, 2003).

    Google Scholar 

  2. 2.

    A. Rida, L. Yang, R. Vyas, and M.M. Tentzeris, IEEE Antennas Propag. 51, 13 (2009).

    Google Scholar 

  3. 3.

    R. Vyas, V. Lakafosis, A. Rida, N. Chaisilwattana, S. Travis, J. Pan, and M.M. Tentzeris, IEEE Trans. Microw. Theory Tech. 57, 1370 (2009).

    Article  Google Scholar 

  4. 4.

    M.L. Allen, K. Jaakkola, K. Nummila, and H. Seppa, IEEE Trans. Compon. Packag. Technol. 32, 325 (2009).

    Article  Google Scholar 

  5. 5.

    M. Allen, C. Lee, B. Ahn, T. Kololuoma, K. Shin, and S. Ko, Microelectron. Eng. 88, 3293 (2011).

    Article  Google Scholar 

  6. 6.

    N. Lim, J. Kim, S. Lee, N. Kim, and G. Cho, IEEE Trans. Adv. Packag. 32, 72 (2009).

    Article  Google Scholar 

  7. 7.

    S.L. Merilampi, T. Björninen, L. Ukkonen, P. Ruuskanen, and L. Sydänheimo, Int. J. Adv. Manuf. Technol. 53, 577 (2011).

    Article  Google Scholar 

  8. 8.

    J. Virtanen, J. Virkki, A.Z. Elsherbeni, L. Sydänheimo, and L. Ukkonen, Int. J. Antennas Propag. (2012). doi:10.1155/2012/801014.

    Google Scholar 

  9. 9.

    L. Catarinucci, R. Colella, A. Esposito, L. Tarricone, and M. Zappatore, J. Med. Syst. 36, 3425 (2012).

    Google Scholar 

  10. 10.

    K. Koski, E. Koski, J. Virtanen, T. Björninen, L. Sydänheimo, L. Ukkonen, and A.Z. Elsherbeni, Int. J. Adv. Manuf. Technol. 62, 167 (2012).

    Article  Google Scholar 

  11. 11.

    R. Sangoi, C.G. Smith, M.D. Seymour, J.N. Venkataraman, D.M. Clark, M.L. Kleper, and B.E. Kahn, J. Dispers. Sci. Technol. 25, 513 (2004).

    Article  Google Scholar 

  12. 12.

    R. Faddoul, N. Reverdy-Bruas, and A. Blayo, Sci. Eng. B Solid. 177, 1053 (2012).

    Article  Google Scholar 

  13. 13.

    R. Kattumenu, M. Rebros, M. Joyce, P.D. Fleming, and G. Neelgund, Nord. Pulp Pap. Res. J. 24, 101 (2009).

    Article  Google Scholar 

  14. 14.

    S. Merilampi, T. Laine-Ma, and P. Ruuskanen, Microelectron. Reliab. 49, 782 (2009).

    Article  Google Scholar 

  15. 15.

    Y. Kim, H. Kim, and H. Yoo, IEEE Trans. Adv. Packag. 33, 196 (2010).

    Article  Google Scholar 

  16. 16.

    D.A. Roberson, R.B. Wicker, and E. MacDonald, J. Electron. Mater. 41, 2553 (2012).

    Article  Google Scholar 

  17. 17.

    S. Magdassi, M. Grouchko, O. Berezin, and A. Kamyshny, ACS Nano 4, 1943 (2010).

    Article  Google Scholar 

  18. 18.

    B. Derby, Annu. Rev. Mater. Res. 40, 395 (2010).

    Article  Google Scholar 

  19. 19.

    F. Tao, M.E. Grass, Y. Zhang, D.R. Butcher, J.R. Renzas, Z. Liu, J.Y. Chung, B.S. Mun, M. Salmeron, and G.A. Somorjai, Science 322, 932 (2008).

    Article  Google Scholar 

  20. 20.

    J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, and U.S. Schubert, J. Mater. Chem. 20, 8446 (2010).

    Article  Google Scholar 

  21. 21.

    H.C. Jung, S. Cho, J.W. Joung, and Y. Oh, J. Electron. Mater. 36, 1211 (2007).

    Article  Google Scholar 

  22. 22.

    D.J. Lee and J.H. Oh, Thin Solid Films 518, 6352 (2010).

    Article  Google Scholar 

  23. 23.

    J.W. Kim, Y.C. Lee, J.M. Kim, W. Nah, H.S. Lee, H.C. Kwon, and S.B. Jung, Microelectron. Eng. 87, 379 (2010).

    Article  Google Scholar 

  24. 24.

    M. Tanabe, M. Nishitsuji, Y. Anda, and Y. Ota, IEEE Trans. Microw. Theory Tech. 48, 872 (2000).

    Article  Google Scholar 

  25. 25.

    Y. Feng, M. Mueller, J. Liebeskind, Q. Chen, L.R Zheng, W. Schmidt, and W. Zapka, International Conference on Digital Printing Technologies Proceedings, Minneapolis, October 26 (2011), p. 454.

  26. 26.

    V.K. Palukuru, K. Sanoda, V. Pynttäri, T. Hu, R. Mäkinen, M. Mäntysalo, J. Hagberg, and H. Jantunen, Int. J. Appl. Ceram. Technol. 8, 940 (2011).

    Article  Google Scholar 

  27. 27.

    A. Chiolerio, M. Cotto, P. Pandolfi, P. Martino, V. Camarchia, M. Pirola, and G. Ghione, Microelectron. Eng. 97, 8 (2012).

    Article  Google Scholar 

  28. 28.

    WYKO Surface Profiler Technical Reference Manual (v2.2.1) (Tucson, AZ: Veeco Process Metrology, 1999).

  29. 29.

    F. Molina-Lopez, D. Briand, and N.F. De Rooij, Sens. Actuators B Chem. 166–67, 212 (2012).

    Article  Google Scholar 

  30. 30.

    S.S. Mohan, M.D.M. Hershenson, S.P. Boyd, and T.H. Lee, IEEE J. Solid State Circuits 34, 1419 (1999).

    Article  Google Scholar 

  31. 31.

    W. Zhang, S.H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, Microelectron. Eng. 76, 146 (2004).

    Article  Google Scholar 

  32. 32.

    E.H. Sondheimer, Adv. Phys. 2001, 499 (2001).

    Article  Google Scholar 

  33. 33.

    F. Lacy, Nanoscale Res. Lett. 6, 1 (2011).

    Article  Google Scholar 

  34. 34.

    N. Artunç, M.D. Bilge, and G. Utlu, Surf. Coat. Tech. 201, 8377 (2007).

    Article  Google Scholar 

  35. 35.

    D.M. Pozard, Microwave Engineering, 4 nd edn (New York NY: John Wiley & Sons, 2012).

    Google Scholar 

  36. 36.

    C. Kim, M. Nogi, and S. Suganuma, J. Micromech. Microeng. 22, 3 (2012).

    Google Scholar 

  37. 37.

    M. Singh, H.M. Haverinen, P. Dhagat, and G.E. Jabbour, Adv. Mater. 22, 673 (2010).

    Article  Google Scholar 

  38. 38.

    D.J. Lee, J.H. Oh, and H.S. Bae, Mater. Lett. 64, 1069 (2010).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to José F. Salmerón.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salmerón, J.F., Molina-Lopez, F., Briand, D. et al. Properties and Printability of Inkjet and Screen-Printed Silver Patterns for RFID Antennas. Journal of Elec Materi 43, 604–617 (2014).

Download citation

Key words

  • Inkjet
  • screen printing
  • printed electronics
  • coplanar waveguide
  • coil antenna
  • RFID smart tag