Journal of Electronic Materials

, Volume 43, Issue 2, pp 604–617 | Cite as

Properties and Printability of Inkjet and Screen-Printed Silver Patterns for RFID Antennas

  • José F. SalmerónEmail author
  • Francisco Molina-Lopez
  • Danick Briand
  • Jason J. Ruan
  • Almudena Rivadeneyra
  • Miguel A. Carvajal
  • L. F. Capitán-Vallvey
  • Nico F. de Rooij
  • Alberto J. Palma


We report the modeling, and geometrical and electrical characterization, of inkjet and screen-printed patterns on different polymeric substrates for use as antennas in radio-frequency identification (RFID) applications. We compared the physical and electrical characteristics of two silver nanoparticle-based commercial inkjet-printable inks and one screen-printable silver paste, when deposited on polyimide (PI), polyethylene terephthalate (PET), and polyetherimide (PEI) substrates. First, the thickness of the inkjet-printed patterns was predicted by use of an analytical model based on printing conditions and ink composition. The predicted thickness was confirmed experimentally, and geometrical characterization of the lines was completed by measuring the root-mean-square roughness of the patterns. Second, direct-current electrical characterization was performed to identify the printing conditions yielding the lowest resistivity and sheet resistance. The minimum resistivity for the inkjet-printing method was 8.6 ± 0.8 μΩ cm, obtained by printing four stacked layers of one of the commercial inks on PEI, whereas minimum resistivity of 44 ± 7 μΩ cm and 39 ± 4 μΩ cm were obtained for a single layer of screen-printed ink on polyimide (PI) with 140 threads/cm mesh and 90 threads/cm mesh, respectively. In every case, these minimum values of resistivity were obtained for the largest tested thickness. Coplanar waveguide transmission lines were then designed and characterized to analyze the radio-frequency (RF) performance of the printed patterns; minimum transmission losses of 0.0022 ± 0.0012 dB/mm and 0.0016 ± 0.0012 dB/mm measured at 13.56 MHz, in the high-frequency (HF) band, were achieved by inkjet printing on PEI and screen printing on PI, respectively. At 868 MHz, in the ultra-high-frequency band, the minimum values of transmission loss were 0.0130 ± 0.0014 dB/mm for inkjet printing on PEI and 0.0100 ± 0.0014 dB/mm for screen printing on PI. Although the resistivity achieved is lower for inkjet printing than for screen printing, RF losses for inkjetted patterns were larger than for screen-printed patterns, because thicker layers were obtained by screen printing. Finally, several coil inductors for the HF band were also fabricated by use of both printing techniques, and were used as antennas for semi-passive smart RFID tags on plastic foil capable of measuring temperature and humidity.

Key words

Inkjet screen printing printed electronics coplanar waveguide coil antenna RFID smart tag 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Finkenzeller, RFID Handbook, 2nd ed. (New York NY: Wiley, 2003).CrossRefGoogle Scholar
  2. 2.
    A. Rida, L. Yang, R. Vyas, and M.M. Tentzeris, IEEE Antennas Propag. 51, 13 (2009).Google Scholar
  3. 3.
    R. Vyas, V. Lakafosis, A. Rida, N. Chaisilwattana, S. Travis, J. Pan, and M.M. Tentzeris, IEEE Trans. Microw. Theory Tech. 57, 1370 (2009).CrossRefGoogle Scholar
  4. 4.
    M.L. Allen, K. Jaakkola, K. Nummila, and H. Seppa, IEEE Trans. Compon. Packag. Technol. 32, 325 (2009).CrossRefGoogle Scholar
  5. 5.
    M. Allen, C. Lee, B. Ahn, T. Kololuoma, K. Shin, and S. Ko, Microelectron. Eng. 88, 3293 (2011).CrossRefGoogle Scholar
  6. 6.
    N. Lim, J. Kim, S. Lee, N. Kim, and G. Cho, IEEE Trans. Adv. Packag. 32, 72 (2009).CrossRefGoogle Scholar
  7. 7.
    S.L. Merilampi, T. Björninen, L. Ukkonen, P. Ruuskanen, and L. Sydänheimo, Int. J. Adv. Manuf. Technol. 53, 577 (2011).CrossRefGoogle Scholar
  8. 8.
    J. Virtanen, J. Virkki, A.Z. Elsherbeni, L. Sydänheimo, and L. Ukkonen, Int. J. Antennas Propag. (2012). doi: 10.1155/2012/801014.Google Scholar
  9. 9.
    L. Catarinucci, R. Colella, A. Esposito, L. Tarricone, and M. Zappatore, J. Med. Syst. 36, 3425 (2012).Google Scholar
  10. 10.
    K. Koski, E. Koski, J. Virtanen, T. Björninen, L. Sydänheimo, L. Ukkonen, and A.Z. Elsherbeni, Int. J. Adv. Manuf. Technol. 62, 167 (2012).CrossRefGoogle Scholar
  11. 11.
    R. Sangoi, C.G. Smith, M.D. Seymour, J.N. Venkataraman, D.M. Clark, M.L. Kleper, and B.E. Kahn, J. Dispers. Sci. Technol. 25, 513 (2004).CrossRefGoogle Scholar
  12. 12.
    R. Faddoul, N. Reverdy-Bruas, and A. Blayo, Sci. Eng. B Solid. 177, 1053 (2012).CrossRefGoogle Scholar
  13. 13.
    R. Kattumenu, M. Rebros, M. Joyce, P.D. Fleming, and G. Neelgund, Nord. Pulp Pap. Res. J. 24, 101 (2009).CrossRefGoogle Scholar
  14. 14.
    S. Merilampi, T. Laine-Ma, and P. Ruuskanen, Microelectron. Reliab. 49, 782 (2009).CrossRefGoogle Scholar
  15. 15.
    Y. Kim, H. Kim, and H. Yoo, IEEE Trans. Adv. Packag. 33, 196 (2010).CrossRefGoogle Scholar
  16. 16.
    D.A. Roberson, R.B. Wicker, and E. MacDonald, J. Electron. Mater. 41, 2553 (2012).CrossRefGoogle Scholar
  17. 17.
    S. Magdassi, M. Grouchko, O. Berezin, and A. Kamyshny, ACS Nano 4, 1943 (2010).CrossRefGoogle Scholar
  18. 18.
    B. Derby, Annu. Rev. Mater. Res. 40, 395 (2010).CrossRefGoogle Scholar
  19. 19.
    F. Tao, M.E. Grass, Y. Zhang, D.R. Butcher, J.R. Renzas, Z. Liu, J.Y. Chung, B.S. Mun, M. Salmeron, and G.A. Somorjai, Science 322, 932 (2008).CrossRefGoogle Scholar
  20. 20.
    J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, and U.S. Schubert, J. Mater. Chem. 20, 8446 (2010).CrossRefGoogle Scholar
  21. 21.
    H.C. Jung, S. Cho, J.W. Joung, and Y. Oh, J. Electron. Mater. 36, 1211 (2007).CrossRefGoogle Scholar
  22. 22.
    D.J. Lee and J.H. Oh, Thin Solid Films 518, 6352 (2010).CrossRefGoogle Scholar
  23. 23.
    J.W. Kim, Y.C. Lee, J.M. Kim, W. Nah, H.S. Lee, H.C. Kwon, and S.B. Jung, Microelectron. Eng. 87, 379 (2010).CrossRefGoogle Scholar
  24. 24.
    M. Tanabe, M. Nishitsuji, Y. Anda, and Y. Ota, IEEE Trans. Microw. Theory Tech. 48, 872 (2000).CrossRefGoogle Scholar
  25. 25.
    Y. Feng, M. Mueller, J. Liebeskind, Q. Chen, L.R Zheng, W. Schmidt, and W. Zapka, International Conference on Digital Printing Technologies Proceedings, Minneapolis, October 26 (2011), p. 454.Google Scholar
  26. 26.
    V.K. Palukuru, K. Sanoda, V. Pynttäri, T. Hu, R. Mäkinen, M. Mäntysalo, J. Hagberg, and H. Jantunen, Int. J. Appl. Ceram. Technol. 8, 940 (2011).CrossRefGoogle Scholar
  27. 27.
    A. Chiolerio, M. Cotto, P. Pandolfi, P. Martino, V. Camarchia, M. Pirola, and G. Ghione, Microelectron. Eng. 97, 8 (2012).CrossRefGoogle Scholar
  28. 28.
    WYKO Surface Profiler Technical Reference Manual (v2.2.1) (Tucson, AZ: Veeco Process Metrology, 1999).Google Scholar
  29. 29.
    F. Molina-Lopez, D. Briand, and N.F. De Rooij, Sens. Actuators B Chem. 166–67, 212 (2012).CrossRefGoogle Scholar
  30. 30.
    S.S. Mohan, M.D.M. Hershenson, S.P. Boyd, and T.H. Lee, IEEE J. Solid State Circuits 34, 1419 (1999).CrossRefGoogle Scholar
  31. 31.
    W. Zhang, S.H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, Microelectron. Eng. 76, 146 (2004).CrossRefGoogle Scholar
  32. 32.
    E.H. Sondheimer, Adv. Phys. 2001, 499 (2001).CrossRefGoogle Scholar
  33. 33.
    F. Lacy, Nanoscale Res. Lett. 6, 1 (2011).CrossRefGoogle Scholar
  34. 34.
    N. Artunç, M.D. Bilge, and G. Utlu, Surf. Coat. Tech. 201, 8377 (2007).CrossRefGoogle Scholar
  35. 35.
    D.M. Pozard, Microwave Engineering, 4 nd edn (New York NY: John Wiley & Sons, 2012).Google Scholar
  36. 36.
    C. Kim, M. Nogi, and S. Suganuma, J. Micromech. Microeng. 22, 3 (2012).Google Scholar
  37. 37.
    M. Singh, H.M. Haverinen, P. Dhagat, and G.E. Jabbour, Adv. Mater. 22, 673 (2010).CrossRefGoogle Scholar
  38. 38.
    D.J. Lee, J.H. Oh, and H.S. Bae, Mater. Lett. 64, 1069 (2010).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • José F. Salmerón
    • 1
    Email author
  • Francisco Molina-Lopez
    • 2
  • Danick Briand
    • 2
  • Jason J. Ruan
    • 2
  • Almudena Rivadeneyra
    • 1
  • Miguel A. Carvajal
    • 1
  • L. F. Capitán-Vallvey
    • 3
  • Nico F. de Rooij
    • 2
  • Alberto J. Palma
    • 1
  1. 1.ECSens, Departamento de Electrónica y Tecnología de Computadores, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Sensors, Actuators and Microsystems Laboratory (SAMLAB), Institute of Microengineering (IMT)École Polytechnique FÉdÉrale de Lausanne (EPFL)NeuchâtelSwitzerland
  3. 3.ECSens, Departamento de Química Analítica, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations