Journal of Electronic Materials

, Volume 43, Issue 6, pp 1829–1836 | Cite as

Use of Atomistic Phonon Dispersion and Boltzmann Transport Formalism to Study the Thermal Conductivity of Narrow Si Nanowires

  • Hossein Karamitaheri
  • Neophytos Neophytou
  • Hans Kosina
Article

Abstract

We study the thermal properties of ultra-narrow silicon nanowires (NW) with diameters from 3 nm to 12 nm. We use the modified valence-force-field method for computation of phononic dispersion and the Boltzmann transport equation for calculation of phonon transport. Phonon dispersion in ultra-narrow 1D structures differs from dispersion in the bulk and dispersion in thicker NWs, which leads to different thermal properties. We show that as the diameter of the NW is reduced the density of long-wavelength phonons per cross section area increases, which increases their relative importance in carrying heat compared with the rest of the phonon spectrum. This effect, together with the fact that low-frequency, low-wavevector phonons are affected less by scattering and have longer mean-free-paths than phonons in the rest of the spectrum, leads to a counter-intuitive increase in thermal conductivity as the diameter is reduced to the sub-ten-nanometers range. This behavior is retained in the presence of moderate boundary scattering.

Keywords

Silicon nanowires thermal conductivity modified valence-force-field method Boltzmann transport equation low-dimensional effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard, and J.R. Heath, Nature 451, 168 (2008).CrossRefGoogle Scholar
  2. 2.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Lim, K. Hippalgaonkar, S.C. Andrews, A. Majumdar, and P. Yang, Nano Lett. 12, 2475 (2012).CrossRefGoogle Scholar
  4. 4.
    I. Ponomareva, D. Srivastava, and M. Menon, Nano Lett. 7, 1155 (2007).CrossRefGoogle Scholar
  5. 5.
    N. Yang, G. Zhang, and B. Li, Nano Lett. 8, 276 (2008).CrossRefGoogle Scholar
  6. 6.
    S.-C. Wang, X.-G. Liang, X.-H. Xu, and T. Ohara, J. Appl. Phys. 105, 014316 (2009).CrossRefGoogle Scholar
  7. 7.
    M. Liangraksa and I.K. Puri, J. Appl. Phys. 109, 113501 (2011).CrossRefGoogle Scholar
  8. 8.
    J.H. Oh, M. Shin, and M.-G. Jang, J. Appl. Phys. 111, 044304 (2012).CrossRefGoogle Scholar
  9. 9.
    N. Mingo, Phys. Rev. B 68, 113308 (2003).CrossRefGoogle Scholar
  10. 10.
    X. Lu and J. Chu, J. Appl. Phys. 100, 014305 (2006).CrossRefGoogle Scholar
  11. 11.
    M.-J. Huang, W.-Y. Chong, and T.-M. Chang, J. Appl. Phys. 99, 114318 (2006).CrossRefGoogle Scholar
  12. 12.
    P. Martin, Z. Aksamija, E. Pop, and U. Ravaiolo, Phys. Rev. Lett. 102, 125503 (2009).CrossRefGoogle Scholar
  13. 13.
    Z. Aksamija and I. Knezevic, Phys. Rev. B 82, 045319 (2010).CrossRefGoogle Scholar
  14. 14.
    J.E. Turney, A.J.H. McGaughey, and C.H. Amon, J. Appl. Phys. 107, 024317 (2010).CrossRefGoogle Scholar
  15. 15.
    Z. Tian, K. Esfarjani, J. Shiomi, A.S. Henry, and G. Chen, Appl. Phys. Lett. 99, 053122 (2011).CrossRefGoogle Scholar
  16. 16.
    W. Liu and M. Asheghi, J. Appl. Phys. 98, 123523 (2005).CrossRefGoogle Scholar
  17. 17.
    W. Liu and M. Asheghi, J. Heat Transf. 128, 75 (2006).CrossRefGoogle Scholar
  18. 18.
    N. Mingo, L. Yang, D. Li, and A. Majumdar, Nano Lett. 3, 1713 (2003).CrossRefGoogle Scholar
  19. 19.
    Z. Sui and I.P. Herman, Phys. Rev. B 48, 17938 (1993).CrossRefGoogle Scholar
  20. 20.
    A. Paul, M. Luisier, and G. Klimeck, J. Comput. Electron. 9, 160 (2010).CrossRefGoogle Scholar
  21. 21.
    J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Clarendon, 1962).Google Scholar
  22. 22.
    P.N. Keating, Phys. Rev. 145, 637 (1966).CrossRefGoogle Scholar
  23. 23.
    G.P. Srivastava, The Physics of Phonons (New York: Taylor & Francis Group, 1990).Google Scholar
  24. 24.
    M.G. Holland, Phys. Rev. 132, 2461 (1963).CrossRefGoogle Scholar
  25. 25.
    M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A.P. Zhernov, A.V. Inyushkin, A. Taldenkov, V.I. Ozhogin, K.M. Itoh, and E.E. Haller, Phys. Rev. B 56, 9431 (1997).CrossRefGoogle Scholar
  26. 26.
    C. Jeong, S. Datta, and M. Lundstrom, J. Appl. Phys. 111, 093708 (2012).CrossRefGoogle Scholar
  27. 27.
    N. Mingo and D.A. Broido, Nano Lett. 5, 1221 (2005).CrossRefGoogle Scholar
  28. 28.
    E.B. Ramayya, L.N. Maurer, A.H. Davoody, and I. Knezevic, Phys. Rev. B 86, 115328 (2012).CrossRefGoogle Scholar
  29. 29.
    J. Zou and A. Balandin, J. Appl. Phys. 89, 2932 (2001).CrossRefGoogle Scholar
  30. 30.
    J. Carrete, L.J. Gallego, L.M. Varela, and N. Mingo, Phys. Rev. B 84, 075403 (2011).CrossRefGoogle Scholar
  31. 31.
    H. Karamitaheri, M. Pourfath, R. Faez, and H. Kosina, IEEE Trans. Electron Devices 60, 2142 (2013).CrossRefGoogle Scholar
  32. 32.
    Z. Aksamija and I. Knezevic, J. Comput. Electron. 9, 173 (2010).CrossRefGoogle Scholar
  33. 33.
    H. Karamitaheri, N. Neophytou, and H. Kosina, J. Appl. Phys. 113, 204305 (2013).CrossRefGoogle Scholar
  34. 34.
    H. Karamitaheri, N. Neophytou, M.K. Taheri, R. Faez, and H. Kosina, J. Electron. Mater. 42, 2091 (2013).CrossRefGoogle Scholar
  35. 35.
    T. Markussen, A.-P. Jauho, and M. Brandbyge, Nano Lett. 8, 3771 (2008).CrossRefGoogle Scholar
  36. 36.
    M. Luisier, Phys. Rev. B 86, 245407 (2012).CrossRefGoogle Scholar
  37. 37.
    D. Donadio and G. Galli, Nano Lett. 10, 847 (2010).CrossRefGoogle Scholar
  38. 38.
    M.-H. Bae, Z. Li, Z. Aksamija, P.N. Martin, F. Xiong, Z.-Y. Ong, I. Knezevic, and E. Pop, Nat. Commun. 4, 1734 (2013).CrossRefGoogle Scholar
  39. 39.
    X. Lu, J. Appl. Phys. 104, 054314 (2008).CrossRefGoogle Scholar
  40. 40.
    K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J.H. McGaughey, and J.A. Malen, Nat. Commun. 4, 16040 (2013).CrossRefGoogle Scholar
  41. 41.
    M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Hossein Karamitaheri
    • 1
    • 2
  • Neophytos Neophytou
    • 1
    • 3
  • Hans Kosina
    • 1
  1. 1.Institute for MicroelectronicsTU WienViennaAustria
  2. 2.School of Electrical EngineeringSharif University of TechnologyTehranIran
  3. 3.School of EngineeringUniversity of WarwickCoventryUK

Personalised recommendations