Skip to main content
Log in

Evaluation of Electromigration Behaviors of Pb-Free Microbumps in Three-Dimensional Integrated Circuit Packaging

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study investigated electromigration (EM) behaviors of Pb-free microbumps in three-dimensional integrated circuit (3D IC) packaging under electrical current stressing from 1 × 104 A/cm2 to 1 × 105 A/cm2 at ambient temperature of 150°C. EM-induced fast under bump metallization consumption at the cathode of the microbumps was observed when the current density was higher than 8 × 104 A/cm2, whereas no EM-induced damage of the microbumps was found after 14,416 h when the current density was below 1.5 × 104 A/cm2. We propose that the different EM behaviors of the microbumps were mainly due to the effect of back stress. The critical microbump height to trigger EM for different current densities is discussed, and the resistance evolution of samples during current stressing was found to be correlated with the microstructure of the samples. When the resistance was stable through the whole test period, microscopic inspection of the 3D IC samples indicated that the whole microbumps were transformed to intermetallic compounds without significant EM-induced damage. However, the resistance evolution of some misaligned microbumps exhibited a feature of an early spike along with a huge resistance fluctuation during current stressing. When the resistance abruptly increased after lengthy stressing, EM-induced void formation was observed at the cathode side of the Al trace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Wu, P.J. Zheng, C.W. Lee, S.C. Hung, and J.J. Lee, in 41st Annual International Reliability Physics Symposium (IEEE, 2003), pp. 132–139.

  2. R. Rosenberg, D.C. Edelstein, C. Hu, and K.P. Rodbell, Annu. Rev. Mater. Sci. 30, 229 (2000).

    Article  Google Scholar 

  3. E.T. Ogawa, K.-D. Lee, V.A. Blaschke, and P.S. Ho, IEEE Trans. Reliab. 51, 403 (2002).

    Article  Google Scholar 

  4. A. Syed, K. Dhandapani, L. Nicholls, R. Moody, C.J. Berry, and R. Darveaux, in 10th International Conference and Exhibition on Device Packaging (IMAPS, 2010), pp. 166–171.

  5. L. Zhang, S. Ou, J. Huang, K.N. Tu, S. Gee, and L. Nguyen, Appl. Phys. Lett. 88, 012106 (2006).

    Article  Google Scholar 

  6. E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002).

    Article  Google Scholar 

  7. R.R. Tummala and S.M. Kamath, Fundamentals of Microsystems Packaging (New York: McGraw-Hill, 2001), pp. 264–293.

    Google Scholar 

  8. T.Y. Lee, K.N. Tu, and D.R. Frear, J. Appl. Phys. 90, 4502 (2001).

    Article  Google Scholar 

  9. K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability (New York: Springer, 2007).

    Google Scholar 

  10. C. Schmetterer, H. Flandorfer, K.W. Richter, and H. Ipser, J. Electron. Mater. 11, 1415 (2007).

    Article  Google Scholar 

  11. C.E. Ho, S.C. Yang, and C.R. Kao, J. Mater. Sci. Mater. Electron. 18, 2007 (155).

    Google Scholar 

  12. Z. Tang and F.G. Shi, Microelectron. J. 32, 605 (2001).

    Article  Google Scholar 

  13. F.Y. Ouyang, H. Hsu, Y.P. Su, and T.C. Chang, J. Appl. Phys. 110, 123525 (2012).

    Article  Google Scholar 

  14. K.N. Tu, J. Appl. Phys. 94, 5451 (2003).

    Article  Google Scholar 

  15. P.S. Ho and T. Kwok, Rep. Prog. Phys. 52, 301 (1989).

    Article  Google Scholar 

  16. A. Shirazi, A. Varvani-Farahani, and H. Lu, Int. J. Fract. 151, 135 (2008).

    Article  Google Scholar 

  17. Y.W. Chang, S.W. Liang, and C. Chen, Appl. Phys. Lett. 89, 032103 (2006).

    Article  Google Scholar 

  18. A.T. Huang, A.M. Gusak, K.N. Tu, and Y.S. Lai, Appl. Phys. Lett. 88, 141911 (2006).

    Article  Google Scholar 

  19. F.Y. Ouyang and C.L. Kao, J. Appl. Phys. 110, 123525 (2011).

    Article  Google Scholar 

  20. J.M. Poate, K.N. Tu, and J.W. Mayer, Thin Films Interdiffusion and Reactions (New York: Wiley-Interscience, 1978).

    Google Scholar 

  21. A. Syed, K. Dhandapani, R. Moody, L. Nicholls, and M. Kelly, in Electronic Components and Technology Conference (IEEE, 2011), pp. 332–339.

  22. T.Y. Lee, K.N. Tu, S.M. Kuo, and D.R. Frear, J. Appl. Phys. 89, 3189 (2001).

    Article  Google Scholar 

  23. W.J. Choi, E.C.C. Yeh, and K.N. Tu, J. Appl. Phys. 94, 5665 (2003).

    Article  Google Scholar 

  24. J.R. Black, IEEE Trans. Electron Devices 16, 338 (1969).

    Article  Google Scholar 

  25. W.F. Gale and T.C. Totemeier, Smithells Metals Reference Book (Oxford: Elsevier Butterworth-Heinemann, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-Yi Ouyang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, H., Lin, TY. & Ouyang, FY. Evaluation of Electromigration Behaviors of Pb-Free Microbumps in Three-Dimensional Integrated Circuit Packaging. J. Electron. Mater. 43, 236–246 (2014). https://doi.org/10.1007/s11664-013-2840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2840-4

Keywords

Navigation