Journal of Electronic Materials

, Volume 43, Issue 6, pp 1590–1596

Mass Fluctuation Effect in Ti1−xNbxS2 Bulk Compounds

  • M. Beaumale
  • T. Barbier
  • Y. Bréard
  • B. Raveau
  • Y. Kinemuchi
  • R. Funahashi
  • E. Guilmeau
Article

Abstract

The thermoelectric properties of Nb-substituted TiS2 compounds have been investigated in the temperature range of 300 K to 700 K. Polycrystalline samples in the series Ti1−xNbxS2 with x varying from 0 to 0.05 were prepared using solid–liquid–vapor reaction and spark plasma sintering. Rietveld refinements of x-ray diffraction data are consistent with the existence of full solid solution for x ≤ 0.05. Transport measurements reveal that niobium can be considered as an electron donor when substituted at Ti sites. Consequently, the electrical resistivity and the absolute value of the Seebeck coefficient decrease as the Nb content increases, due to an increase in the carrier concentration. Moreover, due to mass fluctuation, the lattice thermal conductivity is reduced, leading to a slight increase of ZT values as compared with TiS2.

Keywords

Thermoelectric niobium titanium disulfide electrical properties thermal conductivity Seebeck coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995), p. 407.Google Scholar
  2. 2.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105–114 (2008).CrossRefGoogle Scholar
  3. 3.
    H. Imai, Y. Shimakawa, and Y. Kubo, Phys. Rev. B 64, 241104 (2001).CrossRefGoogle Scholar
  4. 4.
    C. Wan, Y. Wang, N. Wang, and K. Koumoto, Materials 3, 2606–2617 (2010).CrossRefGoogle Scholar
  5. 5.
    E. Guilmeau, Y. Bréard, and A. Maignan, Appl. Phys. Lett. 99, 052107 (2011).CrossRefGoogle Scholar
  6. 6.
    M. Ohta, S. Satoh, T. Kuzuya, S. Hirai, M. Kunii, and A. Yamamoto, Acta Mater. 60, 7232–7240 (2012).CrossRefGoogle Scholar
  7. 7.
    S. Hebert, W. Kobayashi, and H. Muguerra, et al., Phys. Status Solidi A 210, 69 (2013).CrossRefGoogle Scholar
  8. 8.
    A. Maignan, E. Guilmeau, and F. Gascoin, et al., Sci. Technol. Adv. Mater. 13, 053003 (2012).CrossRefGoogle Scholar
  9. 9.
    P.C. Klipstein, A.G. Bagnall, and W.Y. Liang, J. Phys. C 14, 4067–4081 (1981).CrossRefGoogle Scholar
  10. 10.
    C.M. Fang, R.A. de Groot, and C. Haas, Phys. Rev. B. 56, 4455–4463 (1997).CrossRefGoogle Scholar
  11. 11.
    E.M. Logothetis, W.J. Kaiser, and C.A. Kukkonen, Phys. B 99, 193–198 (1980).CrossRefGoogle Scholar
  12. 12.
    M.S. Whittingham and J.A. Panella, Mater. Res. Bull. 16, 37–45 (1981).CrossRefGoogle Scholar
  13. 13.
    A.H. Thompson, F.R. Gamble, and C.R. Symon, Mater. Res. Bull. 10, 915–919 (1975).CrossRefGoogle Scholar
  14. 14.
    H. Kobayashi, K. Sakashita, M. Sato, T. Nozue, T. Suzuki, and T. Kamimura, Phys. B 237, 169–171 (1997).CrossRefGoogle Scholar
  15. 15.
    M.J. McKelvy and W.S. Glaunsinger, J. Solid State Chem. 66, 181–188 (1987).CrossRefGoogle Scholar
  16. 16.
    L.F. Mattheiss, Phys. Rev. B 8, 3719–3740 (1973).CrossRefGoogle Scholar
  17. 17.
    M.S. Whittingham and F.R. Gamble, Mater. Res. Bull. 10, 363–371 (1975).CrossRefGoogle Scholar
  18. 18.
    M.S. Whittingham, Prog. Solid State Chem. 12, 41–99 (1978).CrossRefGoogle Scholar
  19. 19.
    T. Uchida, K. Kohiro, H. Hinode, M. Wakihara, and M. Taniguchi, Mater. Res. Bull. 22, 935–942 (1987).CrossRefGoogle Scholar
  20. 20.
    C. Julien, I. Samaras, and O. Gorochov, Phys. Rev. B 45, 13390–13395 (1992).CrossRefGoogle Scholar
  21. 21.
    D. Li, X.Y. Qin, J. Zhang, and H.J. Li, Phys. Lett. A 348, 379–385 (2006).CrossRefGoogle Scholar
  22. 22.
    D. Li, X.Y. Qin, J. Liu, and H.S. Yang, Phys. Lett. A 328, 493–499 (2004).CrossRefGoogle Scholar
  23. 23.
    W. Sams, N. Lowhorn, T.M. Tritt, E. Abbott, and J.W. Kolis, Proceedings of 24th International Conference on Thermoelectrics (Piscataway: IEEE, 2005), pp. 99–101.Google Scholar
  24. 24.
    M. Shimakawa, H. Maki, H. Nishihara, and K. Hayashi, Mater. Res. Bull. 32, 689 (1997).CrossRefGoogle Scholar
  25. 25.
    S. Furuseth, J. Alloys Compd. 178, 211–215 (1992).CrossRefGoogle Scholar
  26. 26.
    Y. Tison, et al., Surf. Sci. 563, 83 (2004).CrossRefGoogle Scholar
  27. 27.
    S.K. Srivastava, T.K. Mandal, and B.K. Samantaray, Synth. Met. 90, 135 (1997).CrossRefGoogle Scholar
  28. 28.
    J. Callaway, Phys. Rev. 113, 1046 (1959).CrossRefGoogle Scholar
  29. 29.
    M. Inoue, Y. Muneta, H. Negishi, and M. Sasaki, J. Low Temp. Phys. 63, 235 (1986).CrossRefGoogle Scholar
  30. 30.
    P.G. Klemens, Proc. Phys. Soc. (London), A68, 1113 (1955).CrossRefGoogle Scholar
  31. 31.
    B. Abeles, Phys. Rev. 131, 1906 (1963).CrossRefGoogle Scholar
  32. 32.
    M.-L. Doublet, S. Remy, and F. Lemoigno, J. Chem. Phys. 113, 5879 (2000).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • M. Beaumale
    • 1
  • T. Barbier
    • 1
  • Y. Bréard
    • 1
  • B. Raveau
    • 1
  • Y. Kinemuchi
    • 2
  • R. Funahashi
    • 3
  • E. Guilmeau
    • 1
  1. 1.Laboratoire CRISMAT, UMR 6508 CNRS ENSICAENCaen Cedex 4France
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST), AIST ChubuNagoyaJapan
  3. 3.National Institute of Advanced Industrial Science and Technology (AIST), AIST IkedaOsakaJapan

Personalised recommendations