Skip to main content

Advertisement

Log in

High-Energy-Density Poly(styrene-co-acrylonitrile) Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dielectric response of poly(styrene-co-acrylonitrile) (PSAN) thin films fabricated by a solution casting process was investigated in this work. Linear dielectric behavior was obtained in PSAN films under an electric field at frequencies from 100 Hz to 1 MHz and temperature of −50°C to 100°C. The polymer films exhibited an intermediate dielectric permittivity of 4 and low dielectric loss (tan δ) of 0.027. Under 400 MV/m, the energy density of the PSAN films was 6.8 J/cm3, which is three times higher than that of biaxially oriented polypropylene (BOPP) (about 1.6 J/cm3). However, their charge–discharge efficiency (about 90%) was rather close to that of BOPP. The calculated effective dielectric permittivity of the PSAN films under high electric field was as high as 9, which may be attributed to the improved displacement of the cyanide groups (–CN) polarized at high electric fields. These high-performance features make PSAN attractive for high-energy-density capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cao, P.C. Irwin, and K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797 (2004).

    Article  Google Scholar 

  2. W.J. Sarjeant, J. Zirnheld, and F.W. MacDougall, IEEE Trans. Plasma Sci. 26, 1368 (1998).

    Article  CAS  Google Scholar 

  3. C.W. Reed and S.W. Cichanowskil, IEEE Trans. Dielectr. Electr. Insul. 1, 904 (1994).

    Article  CAS  Google Scholar 

  4. M. Rabuffi and G. Picci, IEEE Trans. Plasma Sci. 30, 1939 (2002).

    Article  CAS  Google Scholar 

  5. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q.M. Zhang, Science 313, 334 (2006).

    Article  CAS  Google Scholar 

  6. Y. Wang, X. Zhou, M. Lin, and Q.M. Zhang, Appl. Phys. Lett. 94, 202905 (2009).

    Article  Google Scholar 

  7. Y. Wang, X. Zhou, Q. Chen, B. Chu, and Q.M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 17, 1036 (2010).

    Article  CAS  Google Scholar 

  8. X. Zhou, X.H. Zhao, Z.G. Suo, C. Zou, J. Runt, S. Liu, S.H. Zhang, and Q.M. Zhang, Appl. Phys. Lett. 94, 162901 (2009).

    Article  Google Scholar 

  9. X. Zhou, B.J. Chu, B. Neese, M.R. Lin, and Q.M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 14, 1133 (2007).

    Article  Google Scholar 

  10. S. Wu, M. Lin, S.G. Lu, L. Zhu, and Q.M. Zhang, Appl. Phys. Lett. 99, 132901 (2011).

    Article  Google Scholar 

  11. Z.C. Zhang and T.C. Chung, Macromolecules 40, 783 (2007).

    Article  CAS  Google Scholar 

  12. J. Li, S. Tan, S. Ding, H. Li, L. Yang, and Z. Zhang, J. Mater. Chem. 22, 23468 (2012).

    Article  CAS  Google Scholar 

  13. F.X. Guan, J.L. Pan, J. Wang, Q. Wang, and L. Zhu, Macromolecules 43, 384 (2010).

    Article  CAS  Google Scholar 

  14. X. Yuan, Y. Matsuyama, and T.C.M. Chung, Macromolecules 43, 4011 (2010).

    Article  CAS  Google Scholar 

  15. X. Yuan and T.C.M. Chung, Appl. Phys. Lett. 98, 062901 (2011).

    Article  Google Scholar 

  16. T.T. Wang and Y. Takase, J. Appl. Phys. 62, 3466 (1987).

    Article  CAS  Google Scholar 

  17. S. Tasaka, Ferroelectric Polymers (New York, NY: Marcel Dekker, 1994).

    Google Scholar 

  18. P.A.M. Steeman, F.H.J. Maurer, and J.V. Turhout, Polym. Eng. Sci. 34, 697 (1994).

    Article  CAS  Google Scholar 

  19. J.S. Hundal and R. Nath, J. Mater. Sci. 34, 5397 (1999).

    Article  CAS  Google Scholar 

  20. J.S. Hundal and R. Nath, IEEE 10th International Symposium on Electrets, 659 (1999).

  21. H.V. Belepsch, W. Kunstler, and R. Danz, Ferroelectrics 81, 353 (1988).

    Article  Google Scholar 

  22. H. Lee, R.E. Salomon, and M.M. Labes, J. Appl. Phys. 50, 3773 (1979).

    Article  CAS  Google Scholar 

  23. S. Tasaka, T. Nakamura, and N. Inagaki, Jpn. J. Appl. Phys. 31, 2492 (1992).

    Article  CAS  Google Scholar 

  24. K.L. Ngai and C.T. White, Phys. Rev. B 20, 2475 (1979).

    Article  CAS  Google Scholar 

  25. A.K. Jonscher, Nature 267, 673 (1977).

    Article  CAS  Google Scholar 

  26. G.P. Belloch, M.S. Sanchez, J.L.G. Ribelles, M.M. Pradas, J.M.M. Duenas, and P. Pissis, Polym. Eng. Sci. 39, 688 (1999).

    Article  CAS  Google Scholar 

  27. L. Zhu and Q. Wang, Macromolecules 45, 2937 (2012).

    Article  CAS  Google Scholar 

  28. F.X. Guan, J. Wang, L.Y. Yang, J.K. Tseng, K. Han, Q. Wang, and L. Zhu, Macromolecules 44, 2190 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, F., Xu, Z., Xia, W. et al. High-Energy-Density Poly(styrene-co-acrylonitrile) Thin Films. J. Electron. Mater. 42, 3489–3493 (2013). https://doi.org/10.1007/s11664-013-2764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2764-z

Keywords

Navigation