Skip to main content
Log in

Four-State Sub-12-nm FETs Employing Lattice-Matched II–VI Barrier Layers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Three-state behavior has been demonstrated in Si and InGaAs field-effect transistors (FETs) when two layers of cladded quantum dots (QDs), such as SiO x -cladded Si or GeO x -cladded Ge, are assembled on the thin tunnel gate insulator. This paper describes FET structures that have the potential to exhibit four states. These structures include: (1) quantum dot gate (QDG) FETs with dissimilar dot layers, (2) quantum dot channel (QDC) with and without QDG layers, (3) spatial wavefunction switched (SWS) FETs with multiple coupled quantum well channels, and (4) hybrid SWS–QDC structures having multiple drains/sources. Four-state FETs enable compact low-power novel multivalued logic and two-bit memory architectures. Furthermore, we show that the performance of these FETs can be enhanced by the incorporation of II–VI nearly lattice-matched layers in place of gate oxides and quantum well/dot barriers or claddings. Lattice-matched high-energy gap layers cause reduction in interface state density and control of threshold voltage variability, while providing a higher dielectric constant than SiO2. Simulations involving self-consistent solutions of the Poisson and Schrödinger equations, and transfer probability rate from channel (well or dot layer) to gate (QD layer) are used to design sub-12-nm FETs, which will aid the design of multibit logic and memory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wang, T. Sun, and Q. Yang, IEEE Trans. Comput. 46, 11 (1997).

    Google Scholar 

  2. S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, R. Varada, M. Ratta, and S. Vora, A-SSCC (2009), pp. 9–12.

  3. C. Kim and L. Chang, IEEE Design & Test (2011).

  4. K. Uchida, M. Saitoh, and S. Kobayashi, IEDM, 569–572 (2008).

  5. T. Tezuka, E. Toyoda, S. Nakaharai, T. Irisawa, N. Hirashita, Y. Moriyama, N. Sugiyama, N. Taoka, Y. Yamashita, O. Kiso, M. Harada, T. Yamamoto, and S. Takagi, IEDM, 887–890 (2007).

  6. J.-H. Park, M. Tada, D. Kuzum, P. Kapur, H.-Y. Yu, H.S. Philip Wong, K.C. Saraswat, IEDM, 389–392 (2008).

  7. J. Lin, S. Lee, H.-J. Oh, W. Yang, G.Q. Lo, D.L. Kwomg, and D.Z. Chi, IEDM (2008), pp. 401–404.

  8. M.D. Schroer and J.R. Petta, Nat. Phys. 4, 516 (2008).

    Article  CAS  Google Scholar 

  9. L.J. Klein, D.E. Savage, and M.A. Eriksson, Appl. Phys. Lett. 90, 033103 (2007).

    Article  Google Scholar 

  10. N. Shaji, C.B. Simmons, M. Thalakulam, L.J. Klein, H. Qin, H. Luo, D.E. Savage, M.G. Lagally, A.J. Rimberg, R. Joynt, M. Friesen, R.H. Blick, S.N. Coppersmith, and M.A. Eriksson, Nat. Phys. 4, 540 (2008).

    Article  CAS  Google Scholar 

  11. A.D. Franklin, M. Luisier, S.-J. Han, G. Tulevski, C.M. Breslin, L. Gignac, M.S. Lundstrom, and W. Haensch, Nano Lett. 12, 758 (2012).

    Article  CAS  Google Scholar 

  12. A.D. Franklin, G.S. Tulevski, S.-J. Han, D. Shahrjerdi, Q. Cao, H.-Y. Chen, H.-S. Philip Wong, and W. Haensch, ACS Nano 6, 1109 (2012).

    Article  CAS  Google Scholar 

  13. F.C. Jain, B. Miller, E. Suarez, P.-Y. Chan, S. Karmakar, F. Al-Amoody, M. Gogna, J. Chandy, and E. Heller, J. Electron. Mater. 40, 1717 (2011).

    Article  CAS  Google Scholar 

  14. F. Jain and E. Heller, US Patent # 8,294,137 (23 October 2012).

  15. F.C. Jain, J. Chandy, B. Miller, E.-S. Hasaneen, and E. Heller, Int. J. High Speed Electron. Syst. 20, 641 (2011).

    Article  CAS  Google Scholar 

  16. P. Gogna, M. Lingalugari, J. Chandy, E. Heller, E.-S. Hasaneen, and F. Jain, Int. J. VLSI Des. Commun. Syst. (VLSICS) 3, 27 (2012).

  17. F. Jain, S. Karmakar, P.-Y. Chan, E. Suarez, M. Gogna, J. Chandy, and E. Heller, J. Electron. Mater. 41, 2775 (2012).

    Article  CAS  Google Scholar 

  18. R. Velampati and F. C. Jain, NSTI Nanotech, Santa Clara, CA, May 20–24, 2007.

  19. M. Gogna, E. Suarez, P.Y. Chan, F. Al-Amoody, S. Kamakar, and F. Jain, J. Electron. Mater. 40 (2011).

  20. D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, IEEE Trans. Electron Devices 47, 2320 (2000).

    Google Scholar 

  21. A.B. Sachid and C. Hu, IEEE Trans. Electron Devices 59, 2037 (2012).

    Article  Google Scholar 

  22. F.C. Jain, E. Suarez, M. Gogna, F. Alamoody, D. Butkiewicus, R. Hohner, T. Liaskas, S. Karmakar, P.-Y. Chan, B. Miller, J. Chandy, and E. Heller, J. Electron. Mater. 38, 1574 (2009).

    Article  CAS  Google Scholar 

  23. S. Karmakar, E. Suarez, and F. Jain, J. Electron. Mater. 40, 1749 (2011).

    Article  CAS  Google Scholar 

  24. F. Jain, S. Karmakar, F. Alamoody, E. Suarez, M. Gogna, P.-Y. Chan, J. Chandy, B. Miller, and E. Heller, International Semiconductor Device Research Symposium, December 8–11, 2009 (College Park, MD).

  25. F. Jain, K. Baskar, S. Karmakar, P. Chan, E. Suarez, B. Miller, J. Chandy, and E. Heller, Proc. International Semiconductor Device Research Symposium, Dec. 7–9, 2011 (College Park, MD).

  26. S.J. Shin, C.S. Jung, B.J. Park, T.K. Yoon, J.J. Lee, S.J. Kim, J.B. Choi, Y. Takahashi, and D.G. Hasko, Appl. Phys. Lett. 97, 103101 (2010).

    Article  Google Scholar 

  27. P.-Y. Chan, M. Linglugari, E. Suarez, B. Miller, J. Ayers, E. Heller, E.-S. Hasaneen, and F. Jain, Fabrication and Simulation of an Indium Gallium Arsenide Quantum-Dot-Gate Field-Effect Transistor (QDG-FET) with ZnMgS as Tunnel Gate Insulator IIVI Workshop, (Seattle, WA, November 27–29, 2012).

  28. P. Gogna, E. Suarez, M. Lingalugari, J. Chandy, E. Heller, E.-S. Hasaneen, and F.C. Jain, Ge-ZnSSe Spatial Wavefunction Switched (SWS)-FETs to Implement Multi-bit SRAMs and Novel Quaternary Logic, IIVI Workshop, November 27–29, 2012 (Seattle, WA).

  29. F.C. Jain and F. Papadimitrakopoulos, US Patent # 7,368,370 (2008).

  30. F. Jain, R. Velampati, and F. Papadimitrakopoulos, EIPBN Conference, June 1–4, 2010 (Anchorage, AK).

  31. S. Chuang and N. Holonyak, Appl. Phys. Lett. 80, 1270 (2002).

    Article  CAS  Google Scholar 

  32. T. Hanyu and M. Kameyama, IEEE J. Solid-State Circuits 30, 1239 (1995).

    Article  Google Scholar 

  33. A.F. Gonzalez and P. Mazumder, IEEE Trans. Comput. 47, 947 (1998).

    Article  Google Scholar 

  34. B. Radanovic, M. Syrzycki, Canadian Conference on Electrical and Computer Engineering (1996), pp. 190–193.

  35. O. Ishizuka and D. Handoko, Proc. 27th Int. Symp. Multiple-Valued Logic (1997), pp. 169–174.

  36. M. Radosavljevic et al., IEDM Proc. Digest, December 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, F., Chan, PY., Suarez, E. et al. Four-State Sub-12-nm FETs Employing Lattice-Matched II–VI Barrier Layers. J. Electron. Mater. 42, 3191–3202 (2013). https://doi.org/10.1007/s11664-013-2758-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2758-x

Keywords

Navigation