Advertisement

Journal of Electronic Materials

, Volume 43, Issue 1, pp 151–154 | Cite as

Characterization of ALD Beryllium Oxide as a Potential High-k Gate Dielectric for Low-Leakage AlGaN/GaN MOSHEMTs

  • Derek W. Johnson
  • Jung Hwan Yum
  • Todd W. Hudnall
  • Ryan M. Mushinski
  • Christopher W. Bielawski
  • John C. Roberts
  • Wei-E Wang
  • Sanjay K. Banerjee
  • H. Rusty Harris
Article

Abstract

The chemical and electrical characteristics of atomic layer deposited (ALD) beryllium oxide (BeO) on GaN were studied via x-ray photoelectron spectroscopy, current–voltage, and capacitance–voltage measurements and compared with those of ALD Al2O3 and HfO2 on GaN. Radiofrequency (RF) and power electronics based on AlGaN/GaN high-electron-mobility transistors are maturing rapidly, but leakage current reduction and interface defect (D it) minimization remain heavily researched. BeO has received recent attention as a high-k gate dielectric due to its large band gap (10.6 eV) and thermal stability on InGaAs and Si, but little is known about its performance on GaN. Unintentionally doped GaN was cleaned in dilute aqueous HCl immediately prior to BeO deposition (using diethylberyllium and H2O precursors). Formation of an interfacial layer was observed in as-deposited samples, similar to the layer formed during ALD HfO2 deposition on GaN. Postdeposition anneal (PDA) at 700°C and 900°C had little effect on the observed BeO binding state, confirming the strength of the bond, but led to increased Ga oxide formation, indicating the presence of unincorporated oxygen in the dielectric. Despite the interfacial layer, gate leakage current of 1.1 × 10−7 A/cm2 was realized, confirming the potential of ALD BeO for use in low-leakage AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors.

Keywords

BeO high-k dielectric GaN gate leakage MOS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Chu, A. Corrion, M. Chen, R. Li, D. Wong, D. Zehnder, B. Hughes, and K. Boutros, IEEE Electron Device Lett. 32, 632–634 (2011).CrossRefGoogle Scholar
  2. 2.
    J.W. Chung, K. Tae-Woo, and T. Palacios, IEEE Int. Electron Devices Meeting (IEDM) 30.2.1–30.2.4. (2010).Google Scholar
  3. 3.
    L. Dong Seup, G. Xiang, G. Shiping, D. Kopp, P. Fay, and T. Palacios, IEEE Electron Device Lett. 32, 1525–1527 (2011).CrossRefGoogle Scholar
  4. 4.
    Y. Yuanzheng, H. Yue, Z. JinCheng, N. Jinyu, M. Wei, F. Qian, and L. Linjie, IEEE Electron Device Lett. 29, 838–840 (2008).CrossRefGoogle Scholar
  5. 5.
    M.R. Coan, J.H. Woo, D. Johnson, I.R. Gatabi, and H.R. Harris, J. Appl. Phys. 112, 024508-024508-6 (2012).Google Scholar
  6. 6.
    R.D. Long, A. Hazeghi, M. Gunji, Y. Nishi, and P.C. McIntyre, Appl. Phys. Lett. 101, 5–241606 (2012).Google Scholar
  7. 7.
    N. Nepal, N.Y. Garces, D.J. Meyer, J.K. Hite, M.A. Mastro, and J.C.R. Eddy, Appl. Phys. Express 4, 055802 (2011).CrossRefGoogle Scholar
  8. 8.
    M. Van Hove, S. Boulay, S.R. Bahl, S. Stoffels, K. Xuanwu, D. Wellekens, K. Geens, A. Delabie, and S. Decoutere, IEEE Electron Device Lett. 33, 667–669 (2012).CrossRefGoogle Scholar
  9. 9.
    J.H. Yum, G. Bersuker, T. Akyol, D.A. Ferrer, M. Lei, P. Keun Woo, T.W. Hudnall, M.C. Downer, C.W. Bielawski, E.T. Yu, J. Price, J.C. Lee, and S.K. Banerjee, IEEE Trans. Electron Devices 58, 4384–4392 (2011).CrossRefGoogle Scholar
  10. 10.
    J.H. Yum, T. Akyol, D.A. Ferrer, J.C. Lee, S.K. Banerjee, M. Lei, M. Downer, T.W. Hudnall, C.W. Bielawski, and G. Bersuker, J. Vac. Sci. Technol. A: Vac. Surf. Films 29, 061501–061506 (2011).CrossRefGoogle Scholar
  11. 11.
    J.H. Yum, T. Akyol, M. Lei, D.A. Ferrer, T.W. Hudnall, M. Downer, C.W. Bielawski, G. Bersuker, J.C. Lee, and S.K. Banerjee, J. Cryst. Growth 334, 126–133 (2011).CrossRefGoogle Scholar
  12. 12.
    J.H. Yum, T. Akyol, M. Lei, T. Hudnall, G. Bersuker, M. Downer, C.W. Bielawski, J.C. Lee, and S.K. Banerjee, J. Appl. Phys. 109, 064101–064104 (2011).CrossRefGoogle Scholar
  13. 13.
    P. Sivasubramani, T.J. Park, B.E. Coss, A. Lucero, J. Huang, B. Brennan, Y. Cao, D. Jena, H. Xing, R.M. Wallace, and J. Kim, Phys. Stat. Sol. Rapid Res. Lett 6, 22–24 (2012).CrossRefGoogle Scholar
  14. 14.
    A. Malmros, H. Blanck, and N. Rorsman, Semicond. Sci. Technol. 26, 075006 (2011).CrossRefGoogle Scholar
  15. 15.
    C.L. Hinkle, M. Milojevic, E.M. Vogel, and R.M. Wallace, Appl. Phys. Lett. 95, 3–151905 (2009).CrossRefGoogle Scholar
  16. 16.
    C.-T. Lee, H.-W. Chen, and H.-Y. Lee, Appl. Phys. Lett. 82, 4304–4306 (2003).CrossRefGoogle Scholar
  17. 17.
    A. Fontsere, A. Perez-Tomas, V. Banu, P. Godignon, J. Millan, H. De Vleeschouwer, J. M. Parsey, P. Moens, 24th Int. Symp. Power Semicond. Devices and ICs (ISPSD) pp. 37–40, (2012).Google Scholar
  18. 18.
    M. Lachab, M. Sultana, H. Fatima, V. Adivarahan, Q. Fareed, and M.A. Khan, Semicond. Sci. Technol. 27, 125001 (2012).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Derek W. Johnson
    • 1
  • Jung Hwan Yum
    • 2
  • Todd W. Hudnall
    • 3
  • Ryan M. Mushinski
    • 3
  • Christopher W. Bielawski
    • 4
  • John C. Roberts
    • 5
  • Wei-E Wang
    • 2
  • Sanjay K. Banerjee
    • 4
  • H. Rusty Harris
    • 1
  1. 1.Texas A&M UniversityCollege StationUSA
  2. 2.SEMATECHAustinUSA
  3. 3.Texas State UniversitySan MarcosUSA
  4. 4.University of Texas at AustinAustinUSA
  5. 5.Nitronex CorporationDurhamUSA

Personalised recommendations