Skip to main content
Log in

Depth Profiling of Electronic Transport Parameters in n-on-p Boron-Ion-Implanted Vacancy-Doped HgCdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report results of a detailed study of electronic transport in n-on-p junctions formed by 150-keV boron-ion implantation in vacancy-doped p-type Hg0.769Cd0.231Te without postimplantation thermal annealing. A mobility spectrum analysis methodology in conjunction with a wet chemical etching-based surface removal approach has been employed to depth profile the transport characteristics of the samples. In the as-implanted samples, three distinct electron species were detected which are shown to be associated with (a) low-mobility electrons in the top 220-nm surface-damaged layer (E 1μ 80K = 2940 cm2/Vs), (b) the B-ion implantation region in the top 500-nm region (E 2μ 80K = 7490 cm2/Vs), and (c) high-mobility electrons in the n-to-p transition region at a depth of 600 nm to 700 nm (E 3μ 80K = 25,640 cm2/Vs). Due to the maximum magnetic field employed (2 T), hole carriers from the underlying vacancy-doped p-type region were detected only after the removal of the top 220 nm of the profiled sample (μ 80K = 126 cm2/Vs), revealing fully p-type character 800 nm below the original sample surface. A comparison of the extracted E 2 electron concentration and calculated B-impurity profile suggests that the n-type region is due primarily to near-surface implantation-induced lattice damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).

    Article  Google Scholar 

  2. J. Baars, A. Hurrle, W. Rothemund, C.R. Fritzsche, and T. Jakobus, J. Appl. Phys. 53, 1461 (1982).

    Article  CAS  Google Scholar 

  3. L.O. Bubulac, W.E. Tennant, R.A. Riedel, and T.J. Magee, J. Vac. Sci. Technol. 21, 251 (1982).

    Article  CAS  Google Scholar 

  4. L.O. Bubulac and W.E. Tennant, Appl. Phys. Lett. 51, 355 (1987).

    Article  CAS  Google Scholar 

  5. L.O. Bubulac, W.E. Tennant, D.S. Lo, D.D. Edwall, J.C. Robinson, J.S. Chen, and G. Bostrup, J. Vac. Sci. Technol. A5, 3166 (1987).

    Google Scholar 

  6. R. Kumar, M.B. Dutt, R. Nath, R. Chander, and S.C. Gupta, J. Appl. Phys. 68, 5564 (1990).

    Article  CAS  Google Scholar 

  7. G. Destéfanis, J. Cryst. Growth 86, 700 (1990).

    Article  Google Scholar 

  8. N. Mainzer and E. Zolotoyabko, J. Electron. Mater. 29, 792 (2000).

    Article  CAS  Google Scholar 

  9. E. Belas, R. Grill, J. Franc, A. Toth, P. Hoschl, H. Sitter, and P. Moravec, J. Cryst. Growth 159, 1117 (1996).

    Article  CAS  Google Scholar 

  10. R. Haakenaasen, T. Moen, T. Colin, H. Steen, and L. Trosdahl-Iversen, J. Appl. Phys. 91, 427 (2002).

    Article  CAS  Google Scholar 

  11. E. Belas, J. Franc, A. Toth, P. Moravec, R. Grill, H. Sitter, and P. Hoschl, Semicond. Sci. Technol. 11, 1116 (1996).

    Article  CAS  Google Scholar 

  12. J. Siliquini, J. Dell, C. Musca, L. Faraone, and J. Piotrowski, J. Cryst. Growth 184–185, 1219 (1998).

    Google Scholar 

  13. T. Nguyen, C. Musca, J. Dell, J. Antoszewski, and L. Faraone, J. Electron. Mater. 32, 15 (2003).

    Article  Google Scholar 

  14. M. Martyniuk, R.H. Sewell, R. Westerhout, G.A. Umana-Membreno, C.A. Musca, J.M. Dell, J. Antoszewski, L. Faraone, D.S. Macintyre, S. Thoms, and C.N. Ironside, J. Appl. Phys. 109, 096102 (2011).

    Article  Google Scholar 

  15. J.F. Ziegler, M. Ziegler, and J. Biersack, Nucl. Instrum. Methods B268, 1818 (2010).

    Google Scholar 

  16. Z. Dziuba and M. Gorska, J. Phys. III 2, 99 (1992).

    CAS  Google Scholar 

  17. J. Antoszewski, L. Faraone, I. Vurgaftman, J. Meyer, and C. Hoffman, J. Electron. Mater. 33, 673 (2004).

    Article  CAS  Google Scholar 

  18. W.A. Beck and J.R. Anderson, J. Appl. Phys. 62, 541 (1987).

    Article  CAS  Google Scholar 

  19. D. Chrastina, J.P. Hague, and D.R. Leadley, J. Appl. Phys. 94, 6583 (2003).

    Article  CAS  Google Scholar 

  20. J. Rothman, J. Meilhan, G. Perrais, J.-P. Belle, and O. Gravrand, J. Electron. Mater. 35, 1174 (2006).

    Article  CAS  Google Scholar 

  21. G.A. Umana-Membreno, J. Antoszewski, L. Faraone, E.P.G. Smith, G. Venzor, S. Johnson, and V. Phillips, J. Electron. Mater. 39, 1023 (2010).

    Article  CAS  Google Scholar 

  22. J. Antoszewski, G.A. Umana-Membreno, and L. Faraone, J. Electron. Mater. 41, 2816 (2012).

    Article  CAS  Google Scholar 

  23. G.L. Hansen and J.L. Schmit, J. Appl. Phys. 54, 1639 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Umana-Membreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umana-Membreno, G.A., Kala, H., Antoszewski, J. et al. Depth Profiling of Electronic Transport Parameters in n-on-p Boron-Ion-Implanted Vacancy-Doped HgCdTe. J. Electron. Mater. 42, 3108–3113 (2013). https://doi.org/10.1007/s11664-013-2659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2659-z

Keywords

Navigation