Journal of Electronic Materials

, Volume 42, Issue 7, pp 2292–2296 | Cite as

Improved Thermoelectric Properties of Se-Doped n-Type PbTe1−xSex (0 ≤ x ≤ 1)

  • Ranita Basu
  • S. Bhattacharya
  • Ranu Bhatt
  • Ajay Singh
  • D. K. Aswal
  • S. K. Gupta
Article

Abstract

Enhancement of the thermoelectric figure of merit is of prime importance for any thermoelectric material. Lead telluride has received attention as a potential thermoelectric material. In this work, the effect of Se substitution has been systematically investigated in PbTe1−xSex. The thermoelectric properties of synthesized alloys were measured in the temperature range of 300 K to 873 K. For the particular composition of x = 0.5, α was highest at ~292 μV/K, while k was lowest at ~0.75 W/m-K, resulting in the highest dimensionless figure of merit of ZT ≈ 0.95 at 600 K. The increase in thermopower for x = 0.5 can be attributed to the high distortion in the crystal lattice which leads to the formation of defect states. These defect states scatter the majority charge carriers, leading to high thermopower and high electrical resistivity. The dramatic reduction of the thermal conductivity for x = 0.5 can be attributed to phonon scattering by defect states.

Keywords

Thermoelectric materials defects thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Rowe, eds., Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC Press, 2006).Google Scholar
  2. 2.
    T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188 (2006).CrossRefGoogle Scholar
  3. 3.
    T.M. Tritt, ed., Semiconductors and Semimetals, vol. 69–71 (San Diego: Academic Press, 2001).Google Scholar
  4. 4.
    M. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  5. 5.
    G.S. Nolas, J. Sharp, and H. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (New York: Springer, 2001).Google Scholar
  6. 6.
    G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat, Int. Mater. Rev. 48, 45 (2003).CrossRefGoogle Scholar
  7. 7.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  8. 8.
    M. Guch, C. Raj Sankar, J. Salvador, G. Meisner, and H. Kleinke, J. Appl. Phys. 111, 063706 (2012).CrossRefGoogle Scholar
  9. 9.
    K. Biswas, J.Q. He, Q.C. Zhang, G.Y. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).CrossRefGoogle Scholar
  10. 10.
    S.N. Girard, J. He, X. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 16588 (2011).Google Scholar
  11. 11.
    C.M. Jaworski, B. Wiendlocha, V. Jovovic, and Joseph P. Heremans, Energy Environ. Sci. 4, 4155 (2011).Google Scholar
  12. 12.
    J. Androulakis, I. Todorov, J. He, D.Y. Chung, V. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 10920 (2011).Google Scholar
  13. 13.
    C.M. Jaworski, V. Kulbachinskii, and J.P. Heremans, Phys. Rev. B: Condens. Matter Mater. Phys. 80, 233201 (2009).CrossRefGoogle Scholar
  14. 14.
    Y. Pei, A.D. Lalonde, N.A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, and G.J. Snyder, Adv. Mater. 23, 5674 (2011).CrossRefGoogle Scholar
  15. 15.
    P.K. Rawat, B. Paul, and P. Banerji, Phys. Status Solidi RRL 6, 481 (2012).CrossRefGoogle Scholar
  16. 16.
    Y. Pei, X. Shi, A.D. Lalonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 1366 (2011).CrossRefGoogle Scholar
  17. 17.
    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).Google Scholar
  18. 18.
    R. Basu, S. Bhattacahrya, R. Bhatt, A. Singh, D.K. Aswal, and S.K. Gupta, Emer. Mater. Res. 1, 306 (2012).CrossRefGoogle Scholar
  19. 19.
    Y.I. Ravich, B.A. Efimova, and I.A. Smirnov, Semiconducting Lead Chalcogenides (Plenum, 1970).Google Scholar
  20. 20.
    G.T. Alekseeva, B. Efimova, L.M. Ostrovsk, O.S. Serebrya, and M. Tsypin, Sov. Phys. Semicond. 4, 1122 (1971).Google Scholar
  21. 21.
    J.Q. Li, S.P. Li, Q.B. Wang, L. Wang, F.S. Liu, and W.Q. Ao, J. Alloys Compd. 509, 4516 (2011).CrossRefGoogle Scholar
  22. 22.
    N.F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (New York: Dover, 1958).Google Scholar
  23. 23.
    N.M. Constantine (Mechanical Engineering Dissertations, 2008).Google Scholar
  24. 24.
    A. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch, 1957).Google Scholar
  25. 25.
    A.D. Lalonde, Y. Pei, H. Wang, and G.J. Snyder, Mater. Today 14, 526 (2011).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Ranita Basu
    • 1
  • S. Bhattacharya
    • 1
  • Ranu Bhatt
    • 1
  • Ajay Singh
    • 1
  • D. K. Aswal
    • 1
  • S. K. Gupta
    • 1
  1. 1.Technical Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations