Advertisement

Journal of Electronic Materials

, Volume 42, Issue 8, pp 2498–2503 | Cite as

Heraclenin: A Potential Optoelectronic Device Material from Prangos pabularia

  • Javid A. BandayEmail author
  • Ghulam M. Bhat
  • Feroz A. Mir
  • Mushtaq A. Qurishi
  • Surinder Koul
  • Tej K. Razdan
Article

Abstract

Heraclenin (C16H14O5), a linear furanocoumarin, was isolated from the ethyl acetate extract of the roots of Prangos pabularia. The compound was characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), optical microscopy, ultraviolet (UV)–visible, and photoluminescence (PL) measurements. Structural analysis confirmed the orthorhombic structure of the system. Exploration by SEM and optical images predicted that the compound contains microcrystals with irregular morphology. From UV–visible spectroscopy, high transmission was displayed by these crystals in the entire visible range. The optical band gap (E g) was found to be around 3.91 eV and exhibited indirect allowed transitions. Photoluminescence data showed good emission at certain wavelengths in the visible region. The observed optical properties could be due to intramolecular charge transfer (ICT) when excited by any suitable light. The present properties of the compound can be explored for use in optoelectronics and as fluorophores in biological imaging applications.

Keywords

Prangos pabularia heraclenin furanocoumarin orthorhombic optoelectronics wide band gap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Organic Light Emitting Diode—Material, Process and Devices, ed. S.H. Ko (New York: InTech. 2011).Google Scholar
  2. 2.
    A. Adachi, S.A. Manhart, K. Okita, J. Kido, J. Ohshita, and A. Kunai, Synth. Met. 91, 333 (1997).CrossRefGoogle Scholar
  3. 3.
    A. Adronov, J. M. Frechet, J. J.Jung, Chem. Commun., p. 1701. (2000).Google Scholar
  4. 4.
    S.Y. Park, J. Am. Chem. Soc. 124, 14410 (2002).CrossRefGoogle Scholar
  5. 5.
    E. Anthony, M. Heeney, and B.S. Ong, MRS Bull. 33, 698 (2008).CrossRefGoogle Scholar
  6. 6.
    T.D. Anthopoulos, M.J. Frampton, E.B. Namdas, P.L. Burn, and I.D.W. Samuel, Adv. Mater. 16, 557 (2004).CrossRefGoogle Scholar
  7. 7.
    B. Balaganesan, W.J. Shen, and C.-H. Che, Tetrahedron Lett. 44, 5747 (2003).CrossRefGoogle Scholar
  8. 8.
    K. Balakrishnan, A. Datar, R. Oitker, H. Chen, J. Zuo, and L. Zang, J. Am. Chem. Soc. 127, 10496 (2005).CrossRefGoogle Scholar
  9. 9.
    K. Balakrishnan, A. Datar, W. Zhang, X. Yang, T. Naddo, J. Huang, J. Zuo, M. Yen, J.S. Moore, and L. Zang, J. Am. Chem. Soc. 128, 6576 (2006).CrossRefGoogle Scholar
  10. 10.
    R. Bandichhor, A.D. Petrescu, A. Vespa, A.B. Kier, F. Schroeder, and K. Burgess, J. Am. Chem. Soc. 128, 10688 (2006).CrossRefGoogle Scholar
  11. 11.
    Y.Shi, D. Zh, D. Xu, and J.Xiao, Displays, 27 (2006).Google Scholar
  12. 12.
    J. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, Science 273, 884 (1996).CrossRefGoogle Scholar
  13. 13.
    T. Sano, Y. Nishio, Y. Hamada, H. Takahashi, T. Usuki, and K. Shibata, J. Mater. Chem. 10, 157 (2000).CrossRefGoogle Scholar
  14. 14.
    C. Tang and S. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913 (1987).CrossRefGoogle Scholar
  15. 15.
    I.M. Heilborn, Dictionary of Organic Compounds, Vol. 5 (London: Eyre & Spottiswoode, 1965).Google Scholar
  16. 16.
    S. Koul (Ph.D. Thesis, University of Jammu-India, 1981).Google Scholar
  17. 17.
    D.E. Henn, W.G. Williams, and D.J. Gibbons, J. Appl. Crystallogr. 4, 256 (1971).CrossRefGoogle Scholar
  18. 18.
    R.B. Campbell, J. Monteath Robertson, and J. Trotter, Acta Crystallogr. 15, 289 (1962).CrossRefGoogle Scholar
  19. 19.
    E,Menard, V. Podzorov, S.-H. Hur, A. Gaur, M.E. Gershenson, and J.A. Rogers, Adv. Mater., 16, 2097 (2004).Google Scholar
  20. 20.
    A. Patterson, Phys. Rev. 56, 978 (1939).CrossRefGoogle Scholar
  21. 21.
    B. Mason, in The Physics of Clouds (Oxford: Oxford University Press, 1971).Google Scholar
  22. 22.
    V. Meenatchi, K. Muthu, M. Rajasekar, S.P. Meenakshisundaram, and S.C. Mojumdar, ). J. Therm. Anal. Calorim. 108, 895 (2012).Google Scholar
  23. 23.
    N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Oxford: Clarendon, 1979).Google Scholar
  24. 24.
    F. Urbach, Phys. Rev. 92, 1324 (1953).CrossRefGoogle Scholar
  25. 25.
    F.J. Duarte and L.W. Hillman, Dye Laser Principles, with Applications (San Diego, CA: Academic, 1990).Google Scholar
  26. 26.
    K. Ueno, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 41, 1786 (1985).CrossRefGoogle Scholar
  27. 27.
    X. Liu, J.M. Cole, P.G. Waddell, T.-C. Lin, J. Radia, and A. Zeidler J. Phys. Chem. A, 116, 727 (2012).Google Scholar
  28. 28.
    X. Li, X. Wang, J. Gao, X. Yu, and H. Wang, Chem. Phys. 326, 390 (2006).CrossRefGoogle Scholar
  29. 29.
    J. Zyss, J.F. Nicud, and M. Coquillay, J. Chem. Phys. 18, 4260 (1984).Google Scholar
  30. 30.
    N.J. Long, Angew. Chem. 34, 21 (1995).CrossRefGoogle Scholar
  31. 31.
    H.O. Marcy, L.F. Warren, M.S. Web, C.A. Ebbers, S.P. Velsko, G.C. Kennedy, and G.C. Catella, Appl. Opt. 31, 5051 (2002).CrossRefGoogle Scholar
  32. 32.
    S.P. Meenakshisundaram, S. Parthiban, G. Madhurambal, and S.C. Mojumdar, J. Therm. Anal. Calorim. 94, 21 (2008).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Javid A. Banday
    • 1
    Email author
  • Ghulam M. Bhat
    • 2
  • Feroz A. Mir
    • 2
  • Mushtaq A. Qurishi
    • 3
  • Surinder Koul
    • 4
  • Tej K. Razdan
    • 5
  1. 1.Department of ChemistryNational Institute of TechnologyHazratbal, SrinagarIndia
  2. 2.University Science Instrumentation CentreUniversity of KashmirHazratbal, SrinagarIndia
  3. 3.Department of ChemistryUniversity of KashmirHazratbal, SrinagarIndia
  4. 4.Bio-organic DivisionIndian Institute of Integrative Medicine (CSIR)JammuIndia
  5. 5.Department of ChemistryUniversity of JammuJammuIndia

Personalised recommendations