Skip to main content
Log in

Influence of Annealing on Electrical Properties of an Organic Thin Layer-Based n-Type InP Schottky Barrier Diode

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electrical properties of a fabricated Au/polymethylmethacrylate (PMMA)/n-InP Schottky barrier diode have been analyzed for different annealing temperatures using current–voltage (IV) and capacitance–voltage (CV) techniques. It is observed that the Au/PMMA/n-InP structure shows excellent rectifying behavior. The extracted barrier height and ideality factor of the as-deposited Au/PMMA/n-InP Schottky contact are 0.68 eV (JV)/0.82 eV (CV) and 1.57, respectively. However, the barrier height (BH) of the Au/PMMA/n-InP Schottky contact increases to 0.78 eV (JV)/0.99 eV (CV) when the contact is annealed at 150°C for 1 min in nitrogen atmosphere. Upon annealing at 200°C, the BH value decreases to 0.72 eV (JV)/0.90 eV (CV) and the ideality factor increases to 1.48. The PMMA layer increases the effective barrier height of the structure by creating a physical barrier between the Au metal and the n-InP. Cheung’s functions are also used to calculate the series resistance of the Au/PMMA/n-InP structure. The interface state density (N ss) is found to be 6.380 × 1012 cm−2 eV−1 and 1.916 × 1012 cm−2 eV−1 for the as-deposited and 150°C-annealed Au/PMMA/n-InP Schottky contacts, respectively. These results indicate that the interface state density and series resistance have a significant effect on the electrical characteristics of Au/PMMA/n-InP Schottky barrier devices. Finally, it is noted that the diode parameters change with increasing annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.-F. Lei, W.-C. Huang, and C.-L. Lee, J. Appl. Phys. 78, 1 (1995).

    Article  Google Scholar 

  2. Zs.J. Horvath, V. Rakovics, B. Szentpali, and S. Puspoki, Phys. Status Solidi C 0, 916 (2003).

    Article  CAS  Google Scholar 

  3. P.G. McCafferty, A. Sellai, P. Dawson, and H. Elabd, Solid State Electron. 39, 583 (1996).

    Article  CAS  Google Scholar 

  4. N. Newman, T. Kendelwicz, L. Bowman, and W.E. Spicer, Appl. Phys. Lett. 46, 1176 (1985).

    Article  CAS  Google Scholar 

  5. Zs.J. Horvath, V. Rakovics, B. Szentpali, S. Puspoki, and K.Z. Ydansky, Vacuum 71, 113 (2003).

    Article  CAS  Google Scholar 

  6. H. Cetin and E. Ayyildiz, Semicond. Sci. Technol. 20, 625 (2005).

    Article  CAS  Google Scholar 

  7. O. Gullu, O. Baris, M. Biber, and A. Turut, Appl. Surf. Sci. 254, 3039 (2008).

    Article  Google Scholar 

  8. M.D. Aydin and F. Yakuphanoglu, J. Phys. Chem. Solids 68, 1770 (2007).

    Article  CAS  Google Scholar 

  9. M. El-Sayed, H.M.A. Hamid, and R.M. Radwan, Radiat. Phys. Chem. 69, 339 (2004).

    Article  CAS  Google Scholar 

  10. C. Van Nguyan and K. Pote Kamloth, J. Phys. D Appl. Phys. 33, 2230 (2000).

    Article  Google Scholar 

  11. M.M. El-Nahass, K.F. Abd-El-Rahman, A.A.M. Farag, and A.A.A. Darwish, Org. Electron. 6, 129 (2005).

    Article  CAS  Google Scholar 

  12. S. Aydogan, M. Saglam, and A. Turut, Vacuum 77, 269 (2005).

    Article  CAS  Google Scholar 

  13. M. Cakar, N. Yildirim, S. Karatas, C. Temirci, and A. Turut, J. Appl. Phys. 100, 074505 (2006).

    Article  Google Scholar 

  14. A.R. Vearey Roberts and D.A. Evans, Appl. Phys. Lett. 86, 072105 (2005).

    Article  Google Scholar 

  15. O. Gullu, Microelectron. Eng. 87, 648 (2010).

    Article  CAS  Google Scholar 

  16. M.C. Lorengan, Science 278, 2103 (1997).

    Article  Google Scholar 

  17. F.E. Jones, B.P. Wood, J.A. Myers, C.D. Hafar, and M.C. Lorengan, J. Appl. Phys. 86, 6431 (1999).

    Article  CAS  Google Scholar 

  18. S. Angappane, N. Rajeev Kini, T.S. Natarajan, G. Rangarajan, and B. Wessling, Thin Solid Films 41, 7202 (2002).

    Google Scholar 

  19. O. Gullu, A. Turut, and S. Asubay, J. Phys. Condens. Mater. 20, 045215 (2008).

    Article  Google Scholar 

  20. O. Gullu and A. Turut, J. Vac. Sci. Technol., B 28, 466 (2010).

    Article  CAS  Google Scholar 

  21. M. Soylu, B. Abay, and Y. Onganer, J. Phys. Chem. Solids 71, 1398 (2010).

    Article  CAS  Google Scholar 

  22. A.A.M. Farag and I.S. Yahia, Synth. Met. 161, 32 (2011).

    Article  CAS  Google Scholar 

  23. A. Ashok Kumar, K.S. Shin, V. Rajagopal Reddy, C.J. Choi, V. Janardhanam, M.W. Seo, and H. Hong, J. Electrochem. Soc. 159, H33 (2012).

    Article  Google Scholar 

  24. V. Rajagopal Reddy, M. Siva Pratap Reddy, A. Ashok Kumar, and C.J. Choi, Thin Solid Films 520, 5715 (2012).

    Article  Google Scholar 

  25. N. Koch, ChemPhysChem 8, 1438 (2007).

    Article  CAS  Google Scholar 

  26. R. Poddar and C. Luo, Solid State Electron. 50, 1648 (2006).

    Article  Google Scholar 

  27. W. Wang and E.A. Schiff, Appl. Phys. Lett. 91, 133504 (2007).

    Article  Google Scholar 

  28. S. Gunes, H. Neugebauer, and N.S. Saricifici, Chem. Rev. 107, 1324 (2007).

    Article  Google Scholar 

  29. S.J. Kim, W.J. Kim, A.N. Cartwright, and P.N. Prasad, Sol. Energ. Mater. Sol. C. 93, 657 (2009).

    Article  CAS  Google Scholar 

  30. R. Sivakumar, K. Akila, and S. Anandan, Curr. Appl. Phys. 10, 1255 (2010).

    Article  Google Scholar 

  31. J.M.G. Larajeria, H.J. Khoury, D.M. De Azevedo, E.F. Da Silva, and E.A. De Vasconcelos, Appl. Surf. Sci. 190, 390 (2002).

    Article  Google Scholar 

  32. http://www.cmcbooks.co.jp/report.html.

  33. M.N. Kozicki, M. Park, and M. Mitkova, Non-Volatile Memory Technology Symp. (Orlando, FL: NVMTS, 2004), Proc. 2004, 10 (2004).

  34. R.H. Williams and G.Y. Robinson, Physics and Chemistry of III-V Compound Semiconductor Interfaces (New York: Plenum, 1985).

    Google Scholar 

  35. N. Szydlo and J. Oliver, J. Appl. Phys. 50, 1445 (1979).

    Article  CAS  Google Scholar 

  36. Z. Benamara, B. Akkal, A. Talbi, B. Gruzza, and L. Bideux, Mater. Sci. Eng. C 21, 287 (2002).

    Article  Google Scholar 

  37. Z.Q. Shi, R. Wallace, and W.A. Anderson, Appl. Phys. Lett. 59, 446 (1991).

    Article  CAS  Google Scholar 

  38. N.G. Semaltianos, Microelectron. J. 38, 754 (2007).

    Article  CAS  Google Scholar 

  39. U.T. Kampen, S. Park, and D.R.T. Zahn, Appl. Surf. Sci. 190, 461 (2002).

    Article  CAS  Google Scholar 

  40. D.R.T. Zahn, T.U. Kampen, and H. Mendez, Appl. Surf. Sci. 423, 212 (2003).

    Google Scholar 

  41. S. Aydogan, M. Saglam, and A. Turut, Microelectron. Eng. 85, 278 (2008).

    Article  CAS  Google Scholar 

  42. A. Turut, M. Saglam, H. Efeoglu, N. Yalcin, M. Yildirim, and B. Abay, Phys. B 205, 41 (1995).

    Article  CAS  Google Scholar 

  43. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  CAS  Google Scholar 

  44. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  CAS  Google Scholar 

  45. S. Aydogan, M. Saglam, and A. Turut, Polymers 45, 563 (2005).

    Google Scholar 

  46. A.F. Ozdemir, A. Turut, and A. Kokce, Thin Solid Films 425, 210 (2003).

    Article  CAS  Google Scholar 

  47. A.A.M. Farag, I.S. Yalia, and M. Fadel, Int. J. Hydrogen Energ. 34, 4906 (2009).

    Article  CAS  Google Scholar 

  48. A.M. Goodman, J. Appl. Phys. 34, 329 (1963).

    Article  CAS  Google Scholar 

  49. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley-Interscience, 1981), p. 279.

    Google Scholar 

  50. A.M. Cowley, J. Appl. Phys. 34, 3024 (1966).

    Article  Google Scholar 

  51. M. Soylu and B. Abay, Microelectron. Eng. 86, 88 (2009).

    Article  CAS  Google Scholar 

  52. H. Korkut, N. Yildirim, and A. Turut, Microelectron. Eng. 86, 111 (2009).

    Article  CAS  Google Scholar 

  53. A. Turut, B. Bati, A. Kokce, M. Saglam, and N. Yalcin, Phys. Scripta 53, 118 (1996).

    Article  Google Scholar 

  54. H.C. Card and E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971).

    Article  CAS  Google Scholar 

  55. S. Pandey and S. Kal, Solid State Electron. 42, 943 (1998).

    Article  CAS  Google Scholar 

  56. J.Y. Duboz, F. Binet, N. Laurent, E. Rosencher, F. Scholz, V. Harle, O. Briot, B. Gil, and R.L. Aulombard, Mater. Res. Soc. Sym. Proc. 449, 1085 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajagopal Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopal Reddy, V., Umapathi, A. & Sankar Naik, S. Influence of Annealing on Electrical Properties of an Organic Thin Layer-Based n-Type InP Schottky Barrier Diode. J. Electron. Mater. 42, 1282–1289 (2013). https://doi.org/10.1007/s11664-013-2592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2592-1

Keywords

Navigation