Skip to main content
Log in

High-Temperature Performance of Stacked Silicon Nanowires for Thermoelectric Power Generation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Deep reactive-ion etching at cryogenic temperatures (cryo-DRIE) has been used to produce arrays of silicon nanowires (NWs) for thermoelectric (TE) power generation devices. Using cryo-DRIE, we were able to fabricate NWs of large aspect ratios (up to 32) using a photoresist mask. Roughening of the NW sidewalls occurred, which has been recognized as beneficial for low thermal conductivity. Generated NWs, which were 7 μm in length and 220 nm to 270 nm in diameter, were robust enough to be stacked with a bulk silicon chip as a common top contact to the NWs. Mechanical support of the NW array, which can be created by filling the free space between the NWs using silicon oxide or polyimide, was not required. The Seebeck voltage, measured across multiple stacks of up to 16 bulk silicon dies, revealed negligible thermal interface resistance. With stacked silicon NWs, we observed Seebeck voltages that were an order of magnitude higher than those observed for bulk silicon. Degradation of the TE performance of silicon NWs was not observed for temperatures up to 470°C and temperature gradients up to 170 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yano Research Institute, Vibration-Energy & Thermoelectric Power Generation Device Market: Key Findings 2011, http://www.yanoresearch.com/press/pdf/776.pdf. Accessed 20 June 2012.

  2. A.I. Hochbaum, R. Chen, R. Diaz Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  CAS  Google Scholar 

  3. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008).

    Article  CAS  Google Scholar 

  4. P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, Phys. Rev. Lett. 102, 125503 (2009).

    Article  Google Scholar 

  5. J. Lim, K. Hippalgaonkar, S.C. Andrews, A. Majumdar, and P. Yang, Nano Lett. 12, 2475 (2012).

    Article  CAS  Google Scholar 

  6. Y. Li, K. Buddharaju, N. Singh, G.Q. Lo, and S.J. Lee, IEEE Electron Device Lett. 32, 674 (2011).

    Article  CAS  Google Scholar 

  7. Y. Li, K. Buddharaju, N. Singh, and S.J. Lee, J. Electron. Mater. 41, 989 (2012).

    Article  CAS  Google Scholar 

  8. Y. Li, K. Buddharaju, B.C. Tinh, N. Singh, and S.J. Lee, IEEE Electron Device Lett. (2012). doi:10.1109/LED.2012.2187424.

    Google Scholar 

  9. B.M. Curtin and J.E. Bowers, Mater. Res. Soc. Symp. Proc. 1408 (2012). doi:10.1557/opl.2012.4.

  10. B.M. Curtin, E.W. Fang, and J.E. Bowers, J. Electron. Mater. 41, 887 (2012).

    Article  CAS  Google Scholar 

  11. C. Baker, P. Vuppuluri, L. Shi, and M. Hall, J. Electron. Mater. 41, 1290 (2012).

    Article  CAS  Google Scholar 

  12. A. Stranz, J. Kähler, S. Merzsch, A. Waag, and E. Peiner, Microsyst. Technol. 18, 857 (2012).

    Article  CAS  Google Scholar 

  13. A. Stranz, Ü. Sökmen, H.-H. Wehmann, A. Waag, and E. Peiner, J. Electron. Mater. 39, 2013 (2010).

    Article  CAS  Google Scholar 

  14. A. Stranz, Ü. Sökmen, J. Kähler, A. Waag, and E. Peiner, Sens. Actuators A 171, 48 (2011).

    CAS  Google Scholar 

  15. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton, FL: CRC, 1995).

    Book  Google Scholar 

  16. M.W. Pruessner, W.S. Rabinovich, T.H. Stievater, D. Park, and J.W. Baldwin, J. Vac. Sci. Technol. B 25, 21 (2007).

    Article  CAS  Google Scholar 

  17. M. Seong, J.S. Sadhu, J. Ma, M.G. Ghossoub, and S. Sinha, J. Appl. Phys. 111, 124319 (2012).

    Article  Google Scholar 

  18. B. Xu, C. Li, K. Thielemans, M. Myronov, and K. Fobelets, IEEE Trans. Electron Devices 59, 3193 (2012).

    Article  CAS  Google Scholar 

  19. J.P. Feser, J.S. Sadhu, B.P. Azeredo, K.H. Hsu, J. Ma, J. Kim, M. Seong, N.X. Fang, X. Li, P.M. Ferreira, S. Sinha, and D.G. Cahill, J. Appl. Phys. 112, 114306 (2012).

    Article  Google Scholar 

  20. J. Sadhu and S. Sinha, Phys. Rev. B 84, 115450 (2011).

    Article  Google Scholar 

  21. J. Sadhu, M. Seong, and S. Sinha, J. Comput. Electron. 11, 1 (2012).

    Article  CAS  Google Scholar 

  22. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Peiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stranz, A., Waag, A. & Peiner, E. High-Temperature Performance of Stacked Silicon Nanowires for Thermoelectric Power Generation. J. Electron. Mater. 42, 2233–2238 (2013). https://doi.org/10.1007/s11664-013-2590-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2590-3

Keywords

Navigation