Modeling the Rate-Dependent Durability of Reduced-Ag SAC Interconnects for Area Array Packages Under Torsion Loads

Abstract

Solder durability models frequently focus on the applied strain range; however, the rate of applied loading, or strain rate, is also important. In this study, an approach to incorporate strain rate dependency into durability estimation for solder interconnects is examined. Failure data were collected for SAC105 solder ball grid arrays assembled with SAC305 solder that were subjected to displacement-controlled torsion loads. Strain-rate-dependent (Johnson–Cook model) and strain-rate-independent elastic–plastic properties were used to model the solders in finite-element simulation. Test data were then used to extract damage model constants for the reduced-Ag SAC solder. A generalized Coffin–Manson damage model was used to estimate the durability. The mechanical fatigue durability curve for reduced-silver SAC solder was generated and compared with durability curves for SAC305 and Sn-Pb from the literature.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Ganesan and M.G. Pecht, Lead-Free Electronics. Wiley-IEEE, Hoboken, 2006.

  2. 2.

    H. Kim, M. Zhang, C.M. Kumar, D. Suh, P. Liu, D. Kim, M. Xie, and Z. Wang, Electron Comp. Technol. Conf. 57, 962 (2007).

    Google Scholar 

  3. 3.

    R. Dudek, W. Faust, S. Wiese, M. Rollig, and B. Michel, Electron. Packag. Technol. Conf. 9, 14 (2007).

    Google Scholar 

  4. 4.

    D.Y.R. Chong, K. Ng, J.Y.N. Tan, P.T.H. Low, J.H.L. Pang, F.X. Che, B.S. Xiong, and L.H. Xu, Drop impact reliability testing for lead-free and leaded soldered IC packages. Electron. Comp. Technol. Conf. 55, 622 (2005).

    Google Scholar 

  5. 5.

    W.H. Zhu, L. Xu, J.H.L. Pang, X.R. Zhang, E. Poh, Y.F. Sun, A.Y.S. Sun, C.K. Wang, and H.B. Tan, Electron. Comp. Technol. Conf. 58, 1667 (2008).

    Google Scholar 

  6. 6.

    W. Liu, P. Bachorik, and N.C. Lee, Electron. Comp. Technol. Conf. 58, 452 (2008).

    Google Scholar 

  7. 7.

    E.H. Wong, S.K.W. Seah, C.S. Selvanayagam, R. Rajoo, W.D. van Driel, J.F.J.M. Caers, X.J. Zhao, N. Owens, M. Leoni, L.C. Tan, Y.-S. Lai, and C.L. Yeh, J. Electron. Mater. 38, 884 (2009).

    Article  CAS  Google Scholar 

  8. 8.

    C.J. Zhan, C.C. Chuang, T.C. Chang, L.C. Shen, International Microsystems Packaging Assembly and Circuits Technology Conference, pp 66–70, 2007.

  9. 9.

    F. Song, S.W.R. Lee, K. Newman, H. Reynolds, S. Clark, and B. Sykes, Electron. Packag. Technol. Conf. 9, 463 (2007).

    Google Scholar 

  10. 10.

    D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad, B.W. Grimsley, and H.B. Tejada, Mater. Sci. Eng. 460–461, 595 (2007).

    Google Scholar 

  11. 11.

    M. Reid, J. Punch, M. Collins, and C. Ryan, Conference on Soldering and Surface Mount Technology, pp. 3–8, 2008.

  12. 12.

    Y. Liu, F.J.H.G. Kessels, W.D. van Driel, J.A.S. van Driel, F.L. Sun, and G.Q. Zhang, Microelectron. Reliab. 49, 1299 (2009).

    Google Scholar 

  13. 13.

    G. Khatibi, W. Wroczewski, B. Weiss, and H. Ipser, Microelectron. Reliab. 49, 1283 (2009).

    CAS  Google Scholar 

  14. 14.

    M. Osterman, A. Dasgupta, and B. Han, Electron. Comp. Technol. Conf. 56, 7 (2006).

    Google Scholar 

  15. 15.

    J.C. Suhling, H.S. Gale, R.W. Johnson, M.N. Islam, T. Shete, P. Lall, M.J. Bozack, J.L. Evans, P. Seto, T. Gupta, and J.R. Thompson, The Ninth Intersociety Conference on Thermal and Thermo-mechanical Phenomena in Electronic Systems 2, 350 (2004).

    Article  Google Scholar 

  16. 16.

    X. Fan, G. Raiser, and V.S. Vasudevan, Electron. Comp. Technol. Conf. 55, 901 (2005).

    Google Scholar 

  17. 17.

    Z.W. Zhong, Microelectron. Int. 21, 25 (2004).

    Article  Google Scholar 

  18. 18.

    Guidelines for accelerated reliability testing of surface mount solder attachments. IPC-SM-785 Association Connecting Electronics Industries, 1992.

  19. 19.

    A. Zubelewicz, R. Tokarz, R. Kuracina, and J. McGinniss, Adv. Electron. Packag., ASME 10, 1167 (1995).

    Google Scholar 

  20. 20.

    W.C.M. Filho, M. Brizoux, H. Fremont, Y. Danto, Seventh International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 1–6 (Dresden, Germany, 2006).

  21. 21.

    J.H.L. Pang, K.H. Ang, X.Q. Shi, and Z.P. Wang, IEEE Trans. Adv. Packag. 24, 507 (2001).

    Article  Google Scholar 

  22. 22.

    V. Srinivas, M. Al-Bassyiouni, M. Osterman, M. Pecht, International Mechanical Engineering Congress & Exposition, ASME (Anaheim, CA, 2009).

  23. 23.

    V. Srinivas, M. Osterman, R. Farell, M. Pecht, APEX EXPO, IPC (Las Vegas, 2010).

  24. 24.

    H. Qi, Q. Zhang, E.C. Tinsley, M. Osterman, and M. Pecht, IEEE Trans. Compon. Packag. Technol. 31, 309 (2008).

    Article  CAS  Google Scholar 

  25. 25.

    J. Gu, D. Barker, and M. Pecht, Microelectron. Reliab. 47, 1849 (2007).

    Article  Google Scholar 

  26. 26.

    Guidelines for performance test methods and qualification requirements for surface mount solder attachments, IPC-9701, 2002.

  27. 27.

    M. Yunus, A. Primavera, K. Srihari, J.M. Pitarresi, 26th IEEE/CPMT International Symposium on Electronics Manufacturing Technology, 43, 207, 2000.

  28. 28.

    C. Ryan, J. Punch, and B. Rodgers, 13th International Conference Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 436–440, 2005.

  29. 29.

    S. Yee and H. Ladhar, Circ. World 25, 25 (1999).

    Article  Google Scholar 

  30. 30.

    W.C.M. Filho, M. Brizoux, H. Fremont, and Y. Danto, 18th European Symposium on Reliability of Electron Devices Failure Physics and Analysis in Microelectronics Reliability 47, 1663 (2007).

    Google Scholar 

  31. 31.

    P.A. Engel and Y. Ling, ASME J. Electron. Packag. 115, 22 (1993).

    Article  Google Scholar 

  32. 32.

    P.A. Engel, Structural Analysis Printed Circuit Board Systems (New York: Springer, 1993).

    Book  Google Scholar 

  33. 33.

    P.A. Engel and T.M. Miller, IEEE Trans. Compon. Hybrids Manuf. Technol. 16, 577 (1993).

    Article  Google Scholar 

  34. 34.

    S.S. Shetty, (MS Thesis, Department of Mechanical Engineering, University of Maryland, 1999).

  35. 35.

    L. Xu, K.E. Tan, and J.H.L. Pang, Electron. Syst.-Integr. Technol. Conf. 1, 845 (2008).

    Google Scholar 

  36. 36.

    F. Qin, T. An, and N. Chen, J. Appl. Mech. 77, 110081 (2010).

    Article  Google Scholar 

  37. 37.

    V. Srinivas, M. Al-Bassyiouni, M. Osterman, and M. Pecht, International Mechanical Engineering Congress & Exposition, ASME (Anaheim, CA, 2009).

  38. 38.

    J.M. Kim, S.W. Woo, Y.S. Chang, Y.J. Kim, J.B. Choi, and K.Y. Ji, Thin Solid Films, International Conference on Microelectronics and Plasma Technology 517, 4255 (2009).

    Article  CAS  Google Scholar 

  39. 39.

    X. Fan, M. Pei, and P.K. Bhatti, Proceedings of the Electronic Components and Technology Conference, 2006.

  40. 40.

    A.R. Syed, Proceedings 54th Electronic Components and Technology Conference (Las Vegas, 2004).

  41. 41.

    R. Darveaux, Proceedings of the TMS Annual Meeting, pp. 213–218 (Orlando, FL, 1997).

  42. 42.

    F.X. Che and J.H.L. Pang, Proceedings of 6th IEEE Electronics Packaging Technology Conference (Singapore, 2004).

  43. 43.

    Y. Zhou, (Ph.D. Dissertation, University of Maryland, 2009).

  44. 44.

    S. Wiese and S. Rzepka, Microelectron. Reliab. 44, 1893 (2004).

    Article  CAS  Google Scholar 

  45. 45.

    F.X. Che, W.H. Zhu, E.S.W. Poh, X.W. Zhang, and X.R. Zhang, J. Alloy. Compd. 507, 215 (2010).

    Article  CAS  Google Scholar 

  46. 46.

    G.R. Johnson and W.H. Cook, Proceedings of the Seventh International Symposium on Ballistics, pp. 541–547 (Hague, The Netherlands, 1983).

  47. 47.

    X. Niu, G. Yuan, Z. Li, and X. Shu, Int. J. Mod. Phys. B 22, 1117 (2008).

    Article  CAS  Google Scholar 

  48. 48.

    W.W. Lee, L.T. Nguyen, and G.S. Selvaduray, Microelectron. Reliab. 40, 231 (2000).

    Article  Google Scholar 

  49. 49.

    S.S. Manson and G.R. Halford, Fatigue and Durability of Structural Materials (Materials Park, OH: ASM International, 2006), p. 49.

    Google Scholar 

  50. 50.

    Y. Kariya, T. Hosoi, S. Terashima, M. Tanaka, and M. Otsuka, J. Electron. Mater. 33, 321 (2004).

    Article  CAS  Google Scholar 

  51. 51.

    Y. Zhou, M. Al-Bassyiouni, and A. Dasgupta, J. Electron. Packag. 131, 011016-1 (2009).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandeep Menon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Srinivas, V., Menon, S., Osterman, M. et al. Modeling the Rate-Dependent Durability of Reduced-Ag SAC Interconnects for Area Array Packages Under Torsion Loads. Journal of Elec Materi 42, 2606–2614 (2013). https://doi.org/10.1007/s11664-013-2575-2

Download citation

Keywords

  • Ball grid array packages
  • Johnson–Cook model
  • interconnect reliability
  • lead-free solders
  • finite-element analysis
  • Weibull analysis