Skip to main content
Log in

Analysis of Nonradiative Carrier Recombination Processes in InN Films by Mid-infrared Spectroscopy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We investigate the reduction in the efficiency of band-edge radiative recombination in InN by two carrier recombination processes via mid-gap states: radiative recombination via deep states and nonradiative recombination (NR). Because of the small band-gap energy value and the existence of the surface electron accumulation layer, the carrier transition processes via deep states cannot be observed easily. We address this problem by using mid-infrared photoluminescence (PL) measurements, and observe an emission peak around 0.32 eV at room temperature, which we interpret as being caused by transition processes via deep-defect states. Since this emission is weaker than the band-edge emission, the dominant carrier recombination process is concluded to be NR by phonon emission. The NR rate is known to be determined by the NR defect density, carrier transport processes to NR defects, and thermal activation processes of carriers. Carrier transport and capture processes by NR defects are investigated using p-type samples for various carrier mobility values. It is concluded that the NR rate is highly affected by the carrier transport, and that the candidates for the NR defect species are point defects and complexes of acceptor nature. We have also observed the correlation between the thermal conductivity and the band-edge PL intensity. As a result, we have found that the NR rate is highly affected by the carrier transport and thermal activation processes in InN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Ishitani, H. Masuyama, W. Terashima, M. Yoshitani, N. Hashimoto, S.B. Che, and A. Yoshikawa, Phys. Stat. Sol. C 2, 2276 (2005).

    Article  CAS  Google Scholar 

  2. Y. Ishitani, M. Fujiwara, X. Wang, S.B. Che, and A. Yoshikawa, Appl. Phys. Lett. 92, 251901 (2008).

    Article  Google Scholar 

  3. Y. Ishitani, K. Kato, H. Ogiwara, S.B. Che, A. Yoshikawa, and X.Q. Wang, J. Appl. Phys. 106, 113515 (2009).

    Article  Google Scholar 

  4. R.E. Jones, K.M. Yu, S.Y. Li, W. Walukiewicz, J.W. Ager, E.E. Haller, H. Lu, and W.J. Schaff, Phys. Rev. Lett. 96, 125505 (2006).

    Article  CAS  Google Scholar 

  5. X.Q. Wang, S.-B. Che, Y. Ishitani, and A. Yoshikawa, Appl. Phys. Lett. 91, 242111 (2007).

    Article  Google Scholar 

  6. D. Imai, Y. Ishitani, M. Fujiwara, X.Q. Wang, K. Kusakabe, and A. Yoshikawa, Appl. Phys. Lett. 98, 181908 (2011).

    Article  Google Scholar 

  7. D. Imai, Y. Ishitani, M. Fujiwara, X.Q. Wang, K. Kusakabe, and A. Yoshikawa, Phys. Stat. Sol. B 249, 472 (2012).

    Article  CAS  Google Scholar 

  8. X.Q. Wang, S.-B. Che, Y. Ishitani, and A. Yoshikawa, Appl. Phys. Lett. 90, 201913 (2007).

    Article  Google Scholar 

  9. A. Yoshikawa, X.Q. Wang, Y. Ishitani, and A. Uedono, Phys. Stat. Sol. A 207, 1011 (2010).

    Article  CAS  Google Scholar 

  10. Y. Ishitani, M. Fujiwara, X.Q. Wang, S.-B. Che, and A. Yoshikawa, Phys. Stat. Sol. C 6, S397 (2009).

    Article  Google Scholar 

  11. M. Fujiwara, Y. Ishitani, X.Q. Wang, S.-B. Che, and A. Yoshikawa, Appl. Phys. Lett. 93, 231903 (2008).

    Article  Google Scholar 

  12. H. Ahn, K.-J. Yu, Y.-L. Hong, and S. Gwo, Appl. Phys. Lett. 97, 062110 (2010).

    Article  Google Scholar 

  13. G. Hatakoshi and S. Nunoue, Appl. Phys. Express 5, 071001 (2012).

    Article  Google Scholar 

  14. F. Chen, A.N. Cartwright, H. Lu, and W.J. Schaff, Appl. Phys. Lett. 83, 24 (2003).

    Article  Google Scholar 

  15. H.-C. Liu, C.-H. Hsu, W.-C. Chou, W.-K. Chen, and W.-H. Chang, Phys. Rev. B 80, 193203 (2009).

    Article  Google Scholar 

  16. G.F. Brown, J.W. Ager III, W. Walukiewicz, W.J. Schaff, and J. Wu, Appl. Phys. Lett. 93, 262105 (2008).

    Article  Google Scholar 

  17. F. Chen, A.N. Cartwright, H. Lu, and W.J. Schaff, Appl. Phys. Lett. 87, 212104 (2005).

    Article  Google Scholar 

  18. J. Wu, W. Walukiewicz, S.X. Li, R. Armitage, J.C. Ho, E.R. Weber, E.E. Haller, H. Lu, W.J. Schaff, A. Barcz, and R. Jakiela, Appl. Phys. Lett. 84, 2805 (2004).

    Article  CAS  Google Scholar 

  19. Y. Shinozuka, Jpn. J. Appl. Phys. 32, 4560 (1993).

    Article  CAS  Google Scholar 

  20. X.D. Pu, J. Chen, W.Z. Shen, H. Ogawa, and Q.X. Guo, J. Appl. Phys. 98, 033527 (2005).

    Article  Google Scholar 

  21. A.X. Levander, T. Tong, K.M. Yu, J. Shu, D. Fu, R. Zhang, H. Lu, W.J. Schaff, O. Dubon, W. Walukiewicz, D.G. Cahill, and J. Wu, Appl. Phys. Lett. 98, 012108 (2011).

    Article  Google Scholar 

  22. A. Uedono, H. Nakamori, K. Narita, J. Suzuki, X. Wang, S.-B. Che, Y. Ishitani, A. Yoshikawa, and S. Ishibashi, J. Appl. Phys. 105, 054507 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ishitani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, D., Ishitani, Y., Fujiwara, M. et al. Analysis of Nonradiative Carrier Recombination Processes in InN Films by Mid-infrared Spectroscopy. J. Electron. Mater. 42, 875–881 (2013). https://doi.org/10.1007/s11664-013-2550-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2550-y

Keywords

Navigation