Selective CdTe Nanoheteroepitaxial Growth on Si(100) Substrates Using the Close-Spaced Sublimation Technique Without the Use of a Mask

Abstract

The development of HgCdTe detectors requires high sensitivity, small pixel size, low defect density, long-term thermal-cycling reliability, and large-area substrates. CdTe bulk substrates were initially used for epitaxial growth of HgCdTe films. However, CdTe has a lattice mismatch with long-wavelength infrared (LWIR) and middle-wavelength infrared (MWIR) HgCdTe that results in detrimental dislocation densities above mid-106 cm−2. This work explores the use of CdTe/Si as a possible substrate for HgCdTe detectors. Although there is a 19% lattice mismatch between CdTe and Si, the nanoheteroepitaxy (NHE) technique makes it possible to grow CdTe on Si substrates with fewer defects at the CdTe/Si interface. In this work, Si(100) was patterned using photolithography and dry etching to create 500-nm to 1-μm pillars. CdTe was selectively deposited on the pillar surfaces using the close-spaced sublimation (CSS) technique. Scanning electron microscopy (SEM) was used to characterize the CdTe selective growth and grain morphology, and transmission electron microscopy (TEM) was used to analyze the structure and quality of the grains. CdTe selectivity was achieved for most of the substrate and source temperatures used in this study. The ability to selectively deposit CdTe on patterned Si(100) substrates without the use of a mask or seed layer has not been observed before using the CSS technique. The results from this study confirm that CSS has the potential to be an effective and low-cost technique for selective nanoheteroepitaxial growth of CdTe films on Si(100) substrates for infrared detector applications.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Rogalski, Inst. Phys. 68, 2267 (2005).

    CAS  Google Scholar 

  2. 2.

    P. Norton, Opto-Electron. Rev. 10, 159 (2002).

    CAS  Google Scholar 

  3. 3.

    M. Traversa, L. Tapfer, P. Paiano, P. Prete, F. Marzo, N. Lovergine, and A.M. Mancini, Appl. Phys. A 91, 23 (2008).

    Article  CAS  Google Scholar 

  4. 4.

    L. He, F. Xiangliang, Q. Wei, L. Weiqiang Wang, Y.W. Chen, H. Xiaoning, J. Yang, Q. Zhang, R. Ding, X. Chen, and L. Wei, J. Electron. Mater. 37, 9 (2008).

    Article  Google Scholar 

  5. 5.

    S. Velicu, G. Badano, Y. Selamet, C.H. Grein, J.P. Faurie, S. Sivananthan, P. Boieriu, D. Rafol, and R. Ashokan, J. Electron. Mater. 30, 6 (2001).

    Article  Google Scholar 

  6. 6.

    M. Carmody, J.G. Pasko, D. Edwall, E. Piquette, M. Kangas, S. Freeman, J. Arias, R. Jacobs, W. Mason, A. Stoltz, Y. Chen, and N.K. Dhar, J. Electron. Mater. 37, 9 (2008).

    Article  Google Scholar 

  7. 7.

    J.B. Varesi, R.E. Bornfreund, A.C. Childs, W.A. Radford, K.D. Maranowski, J.M. Peterson, S.M. Johnson, L.M. Giegerich, T.J. de Lyon, and J.E. Jensen, J. Electron. Mater. 30, 6 (2001).

    Article  Google Scholar 

  8. 8.

    G. Brill, S. Velicu, P. Boieriu, Y. Chen, N.K. Dhar, T.S. Lee, Y. Selamet, and S. Sivananthan, J. Electron. Mater. 30, 60 (2001).

    Article  Google Scholar 

  9. 9.

    M. Carmody, J.G. Pasko, D. Edwall, M. Daraselia, L.A. Almeida, J. Molstad, J.H. Dinan, J.K. Markunas, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 33, 6 (2004).

    Article  Google Scholar 

  10. 10.

    D.J. Smith, S.-C.Y. Tsen, D. Chandrasekhar, P.A. Crozier, S. Rujirawat, G. Brill, Y.P. Chen, R. Sporken, and S. Sivananthan, Mater. Sci. Eng. B 77, 93 (2000).

    Article  Google Scholar 

  11. 11.

    M. Niraula, K. Yasuda, H. Ohnishi, K. Eguchi, H. Takahashi, K. Noda, and Y. Agata, J. Cryst. Growth 284, 15 (2005).

    Article  CAS  Google Scholar 

  12. 12.

    M. Niraula, K. Yasuda, T. Ishiguro, Y. Kawauchi, H. Morishita, and Y. Agata, J. Electron. Mater. 32, 7 (2003).

    Article  Google Scholar 

  13. 13.

    S. Seto, S. Yamada, and K. Suzuki, J. Cryst. Growth 214/215, 5 (2000).

    Article  CAS  Google Scholar 

  14. 14.

    Arev Gabriel Escobedo, Investigation of CdTe(111) Epitaxial Growth via Close-Space Sublimation, Masters Thesis, The University of Texas at El Paso, El Paso, TX, USA, 2008.

  15. 15.

    Q. Jiang, B.J. Cantwell, J.T. Mullins, A. Basu, and A.W. Brinkman, J. Cryst. Growth 310, 1664 (2008).

    Article  CAS  Google Scholar 

  16. 16.

    Y. Chen, S. Farrell, G. Brill, P. Wijewamasuriya, and N. Dhar, J. Cryst. Growth 310, 5303 (2008).

    Article  CAS  Google Scholar 

  17. 17.

    Z. Ma, K.M. Yu, W. Walukiewicz, P.Y. Yu, and S.S. Mao, Appl. Phys. A 96, 379 (2009).

  18. 18.

    F.F. Sizov, Quant. Electron. Optoelectron. 3, 52 (2000).

    CAS  Google Scholar 

  19. 19.

    R. Bommena, C. Fulk, J. Zhao, T.S. Lee, S. Sivananthan, S.R.J. Brueck, and S.D. Hersee, J. Electron. Mater. 34, 6 (2005).

    Article  Google Scholar 

  20. 20.

    E.P.G. Smith, G.M. Venzor, M.D. Newton, M.V. Liguori, J.K. Gleason, R.E. Bornfreund, S.M. Johnson, J.D. Benson, A.J. Stoltz, J.B. Varesi, J.H. Dinan, and W.A. Radford, J. Electron. Mater. 34, 6 (2005).

    Article  Google Scholar 

  21. 21.

    R. Bommena, T. Seldrum, L. Samain, R. Sporken, S. Sivananthan, and S.R.J. Brueck, J. Electron. Mater. 37, 1255 (2008).

    Article  CAS  Google Scholar 

  22. 22.

    T. Seldrum, R. Bommena, L. Samian, J. Dumont, S. Sivananthan, and R. Sporken, J. Vac. Sci. Technol. B 26, 3 (2008).

    Article  Google Scholar 

  23. 23.

    R. Zhang and I. Bhat, J. Electron. Mater. 29, 6 (2000).

    CAS  Google Scholar 

  24. 24.

    I. Bhat and R. Zhang, J. Electron. Mater. 35, 6 (2006).

    Article  Google Scholar 

  25. 25.

    R. Sporken, D. Grajewski, Y. Xin, F. Wiame, G. Brill, P. Boieriu, A. Prociuck, S. Rujieawat, N.K. Dhar, and S. Sivananthan, J. Electron. Mater. 29, 6 (2000).

    Article  Google Scholar 

  26. 26.

    J. Terrazas, A. Rodriguez, C. Lopez, A. Escobedo, F.J. Kuhlmann, J. McClure, and D. Zubia, Thin Solid Films 490, 146 (2005).

    Article  CAS  Google Scholar 

  27. 27.

    S. Quinones, A. Escobedo, J. McClure, D. Zubia, D. Ferrer, G. Brill, Y. Chen, and F. Semendy, Selective CdTe Deposition on CdTe/Si(211) Substrates using Close Spaced Sublimation (2008, unpublished manuscript).

  28. 28.

    A. Escobedo, S. Quinones, M. Adame, J. McClure, D. Zubia, and G. Brill, J. Electron. Mater. 39, 400 (2010).

    Article  CAS  Google Scholar 

  29. 29.

    X.W. Zhou, D.K. Ward, B.M. Wong, and F.P. Doty, Phys. Rev. Lett. PRL 108, 245503 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Quinones.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diaz, A., Quinones, S.A. & Ferrer, D.A. Selective CdTe Nanoheteroepitaxial Growth on Si(100) Substrates Using the Close-Spaced Sublimation Technique Without the Use of a Mask. Journal of Elec Materi 42, 1092–1100 (2013). https://doi.org/10.1007/s11664-013-2519-x

Download citation

Keywords

  • Selective growth
  • CdTe
  • infrared detectors
  • CSS
  • SEM
  • FIB
  • TEM