Journal of Electronic Materials

, Volume 42, Issue 6, pp 1092–1100 | Cite as

Selective CdTe Nanoheteroepitaxial Growth on Si(100) Substrates Using the Close-Spaced Sublimation Technique Without the Use of a Mask

  • A. Diaz
  • S. A. Quinones
  • D. A. Ferrer


The development of HgCdTe detectors requires high sensitivity, small pixel size, low defect density, long-term thermal-cycling reliability, and large-area substrates. CdTe bulk substrates were initially used for epitaxial growth of HgCdTe films. However, CdTe has a lattice mismatch with long-wavelength infrared (LWIR) and middle-wavelength infrared (MWIR) HgCdTe that results in detrimental dislocation densities above mid-106 cm−2. This work explores the use of CdTe/Si as a possible substrate for HgCdTe detectors. Although there is a 19% lattice mismatch between CdTe and Si, the nanoheteroepitaxy (NHE) technique makes it possible to grow CdTe on Si substrates with fewer defects at the CdTe/Si interface. In this work, Si(100) was patterned using photolithography and dry etching to create 500-nm to 1-μm pillars. CdTe was selectively deposited on the pillar surfaces using the close-spaced sublimation (CSS) technique. Scanning electron microscopy (SEM) was used to characterize the CdTe selective growth and grain morphology, and transmission electron microscopy (TEM) was used to analyze the structure and quality of the grains. CdTe selectivity was achieved for most of the substrate and source temperatures used in this study. The ability to selectively deposit CdTe on patterned Si(100) substrates without the use of a mask or seed layer has not been observed before using the CSS technique. The results from this study confirm that CSS has the potential to be an effective and low-cost technique for selective nanoheteroepitaxial growth of CdTe films on Si(100) substrates for infrared detector applications.


Selective growth CdTe infrared detectors CSS SEM FIB TEM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Rogalski, Inst. Phys. 68, 2267 (2005).Google Scholar
  2. 2.
    P. Norton, Opto-Electron. Rev. 10, 159 (2002).Google Scholar
  3. 3.
    M. Traversa, L. Tapfer, P. Paiano, P. Prete, F. Marzo, N. Lovergine, and A.M. Mancini, Appl. Phys. A 91, 23 (2008).CrossRefGoogle Scholar
  4. 4.
    L. He, F. Xiangliang, Q. Wei, L. Weiqiang Wang, Y.W. Chen, H. Xiaoning, J. Yang, Q. Zhang, R. Ding, X. Chen, and L. Wei, J. Electron. Mater. 37, 9 (2008).CrossRefGoogle Scholar
  5. 5.
    S. Velicu, G. Badano, Y. Selamet, C.H. Grein, J.P. Faurie, S. Sivananthan, P. Boieriu, D. Rafol, and R. Ashokan, J. Electron. Mater. 30, 6 (2001).CrossRefGoogle Scholar
  6. 6.
    M. Carmody, J.G. Pasko, D. Edwall, E. Piquette, M. Kangas, S. Freeman, J. Arias, R. Jacobs, W. Mason, A. Stoltz, Y. Chen, and N.K. Dhar, J. Electron. Mater. 37, 9 (2008).CrossRefGoogle Scholar
  7. 7.
    J.B. Varesi, R.E. Bornfreund, A.C. Childs, W.A. Radford, K.D. Maranowski, J.M. Peterson, S.M. Johnson, L.M. Giegerich, T.J. de Lyon, and J.E. Jensen, J. Electron. Mater. 30, 6 (2001).CrossRefGoogle Scholar
  8. 8.
    G. Brill, S. Velicu, P. Boieriu, Y. Chen, N.K. Dhar, T.S. Lee, Y. Selamet, and S. Sivananthan, J. Electron. Mater. 30, 60 (2001).CrossRefGoogle Scholar
  9. 9.
    M. Carmody, J.G. Pasko, D. Edwall, M. Daraselia, L.A. Almeida, J. Molstad, J.H. Dinan, J.K. Markunas, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 33, 6 (2004).CrossRefGoogle Scholar
  10. 10.
    D.J. Smith, S.-C.Y. Tsen, D. Chandrasekhar, P.A. Crozier, S. Rujirawat, G. Brill, Y.P. Chen, R. Sporken, and S. Sivananthan, Mater. Sci. Eng. B 77, 93 (2000).CrossRefGoogle Scholar
  11. 11.
    M. Niraula, K. Yasuda, H. Ohnishi, K. Eguchi, H. Takahashi, K. Noda, and Y. Agata, J. Cryst. Growth 284, 15 (2005).CrossRefGoogle Scholar
  12. 12.
    M. Niraula, K. Yasuda, T. Ishiguro, Y. Kawauchi, H. Morishita, and Y. Agata, J. Electron. Mater. 32, 7 (2003).CrossRefGoogle Scholar
  13. 13.
    S. Seto, S. Yamada, and K. Suzuki, J. Cryst. Growth 214/215, 5 (2000).CrossRefGoogle Scholar
  14. 14.
    Arev Gabriel Escobedo, Investigation of CdTe(111) Epitaxial Growth via Close-Space Sublimation, Masters Thesis, The University of Texas at El Paso, El Paso, TX, USA, 2008.Google Scholar
  15. 15.
    Q. Jiang, B.J. Cantwell, J.T. Mullins, A. Basu, and A.W. Brinkman, J. Cryst. Growth 310, 1664 (2008).CrossRefGoogle Scholar
  16. 16.
    Y. Chen, S. Farrell, G. Brill, P. Wijewamasuriya, and N. Dhar, J. Cryst. Growth 310, 5303 (2008).CrossRefGoogle Scholar
  17. 17.
    Z. Ma, K.M. Yu, W. Walukiewicz, P.Y. Yu, and S.S. Mao, Appl. Phys. A 96, 379 (2009).Google Scholar
  18. 18.
    F.F. Sizov, Quant. Electron. Optoelectron. 3, 52 (2000).Google Scholar
  19. 19.
    R. Bommena, C. Fulk, J. Zhao, T.S. Lee, S. Sivananthan, S.R.J. Brueck, and S.D. Hersee, J. Electron. Mater. 34, 6 (2005).CrossRefGoogle Scholar
  20. 20.
    E.P.G. Smith, G.M. Venzor, M.D. Newton, M.V. Liguori, J.K. Gleason, R.E. Bornfreund, S.M. Johnson, J.D. Benson, A.J. Stoltz, J.B. Varesi, J.H. Dinan, and W.A. Radford, J. Electron. Mater. 34, 6 (2005).CrossRefGoogle Scholar
  21. 21.
    R. Bommena, T. Seldrum, L. Samain, R. Sporken, S. Sivananthan, and S.R.J. Brueck, J. Electron. Mater. 37, 1255 (2008).CrossRefGoogle Scholar
  22. 22.
    T. Seldrum, R. Bommena, L. Samian, J. Dumont, S. Sivananthan, and R. Sporken, J. Vac. Sci. Technol. B 26, 3 (2008).CrossRefGoogle Scholar
  23. 23.
    R. Zhang and I. Bhat, J. Electron. Mater. 29, 6 (2000).Google Scholar
  24. 24.
    I. Bhat and R. Zhang, J. Electron. Mater. 35, 6 (2006).CrossRefGoogle Scholar
  25. 25.
    R. Sporken, D. Grajewski, Y. Xin, F. Wiame, G. Brill, P. Boieriu, A. Prociuck, S. Rujieawat, N.K. Dhar, and S. Sivananthan, J. Electron. Mater. 29, 6 (2000).CrossRefGoogle Scholar
  26. 26.
    J. Terrazas, A. Rodriguez, C. Lopez, A. Escobedo, F.J. Kuhlmann, J. McClure, and D. Zubia, Thin Solid Films 490, 146 (2005).CrossRefGoogle Scholar
  27. 27.
    S. Quinones, A. Escobedo, J. McClure, D. Zubia, D. Ferrer, G. Brill, Y. Chen, and F. Semendy, Selective CdTe Deposition on CdTe/Si(211) Substrates using Close Spaced Sublimation (2008, unpublished manuscript).Google Scholar
  28. 28.
    A. Escobedo, S. Quinones, M. Adame, J. McClure, D. Zubia, and G. Brill, J. Electron. Mater. 39, 400 (2010).CrossRefGoogle Scholar
  29. 29.
    X.W. Zhou, D.K. Ward, B.M. Wong, and F.P. Doty, Phys. Rev. Lett. PRL 108, 245503 (2012).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe University of Texas at El PasoEl PasoUSA
  2. 2.MRCThe University of Texas at AustinAustinUSA

Personalised recommendations