Skip to main content

Advertisement

Log in

Transport Properties of Bulk Thermoelectrics: An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat, and Thermal Conductivity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

For bulk thermoelectrics, improvement of the figure of merit ZT to above 2 from the current values of 1.0 to 1.5 would enhance their competitiveness with alternative technologies. In recent years, the most significant improvements in ZT have mainly been due to successful reduction of thermal conductivity. However, thermal conductivity is difficult to measure directly at high temperatures. Combined measurements of thermal diffusivity, specific heat, and mass density are a widely used alternative to direct measurement of thermal conductivity. In this work, thermal conductivity is shown to be the factor in the calculation of ZT with the greatest measurement uncertainty. The International Energy Agency (IEA) group, under the implementing agreement for Advanced Materials for Transportation (AMT), has conducted two international round-robins since 2009. This paper, part II of our report on the international round-robin testing of transport properties of bulk bismuth telluride, focuses on thermal diffusivity, specific heat, and thermal conductivity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  2. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  CAS  Google Scholar 

  3. T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  CAS  Google Scholar 

  4. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  5. P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).

    Article  CAS  Google Scholar 

  6. G.S. Nolas, G.A. Slack, and S.B. Schujman, Semicond. Semimet. 69, 255 (2000).

    Article  Google Scholar 

  7. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  8. G.S. Nolas, M. Kaeser, R.T. Littletonand, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  CAS  Google Scholar 

  9. D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995).

    Article  CAS  Google Scholar 

  10. C. Uher, Semicond. Semimet. 69, 139 (2000).

    Article  Google Scholar 

  11. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87, 7871 (2000).

    Article  CAS  Google Scholar 

  12. J. Martin, G.S. Nolas, H. Wang, and J. Yang, J. Appl. Phys. 102, 103719 (2007).

    Article  Google Scholar 

  13. W. Jeischko, Metall. Trans. A 1A, 3159 (1970).

    Google Scholar 

  14. S.J. Poon, ed. T.M. Tritt, Semiconductors and Semimetals, Vol. 70, Chap. 2, eds., R.K. Willardson and E.R. Weber (Academic, New York, 2001), p. 37.

  15. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (CRC, Boca Raton, FL, 1995), pp. 407.

  16. D. J. Singh, Sci. Advan. Mater. 3, Special Issue: SI, 561 (2011).

  17. J.F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010).

    Article  Google Scholar 

  18. G.S. Nolas, J. Poon, and M. Kanatzidis, Mater. Bull. 31, 199 (2006).

    Article  CAS  Google Scholar 

  19. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).

    Article  CAS  Google Scholar 

  20. Y.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang, and J.P. Tu, Appl. Phys. Lett. 92, 143106 (2008).

    Article  Google Scholar 

  21. S.F. Fan, J.N. Zhao, J. Guo, Q.Y. Yan, J. Ma, and H.H. Hng, Appl. Phys. Lett. 96, 182104 (2010).

    Article  Google Scholar 

  22. G. Joshi, X. Yan, H.Z. Wang, W.S. Liu, G. Chen, and G.Z.F. Ren, Adv. Energy Mater. 1, 643 (2011).

  23. M. Zhou, J.F. Li, and T. Kita, J. Am. Chem. Soc. 130, 4527 (2008).

    Article  CAS  Google Scholar 

  24. I. Matsubara, R. Funahashi, T. Takeuchi, and S. Sodeoka, J. Appl. Phys. 90, 462 (2001).

    Article  CAS  Google Scholar 

  25. Y.H. Liu, Y.H. Lin, Z. Shi, C.W. Nan, and Z. Shen, J. Am. Ceram. Soc. 88, 1337 (2005).

    Article  CAS  Google Scholar 

  26. W.J. Xie, X.F. Tang, Y.G. Yan, Q.J. Zhang, and T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).

    Article  Google Scholar 

  27. X.F. Tang, W.J. Xie, H. Li, W.Y. Zhao, Q.J. Zhang, and M. Niino, Appl. Phys. Lett. 90, 012102 (2007).

    Article  Google Scholar 

  28. H. Li, X.F. Tang, X. Su, Q.J. Zhang, and C. Uher, J. Phys. D Appl. Phys. 42, 145409 (2009).

    Article  Google Scholar 

  29. G. Joshi, H. Lee, Y.C. Lan, X.W. Wang, G.H. Zhu, D.Z. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Nano Lett. 8, 4670 (2008).

    Article  CAS  Google Scholar 

  30. Y. Ma, Q. Hao, B. Poudel, Y.C. Lan, B. Yu, D.Z. Wang, G. Chen, and Z.F. Ren, Nano Lett. 8, 2580 (2008).

    Article  CAS  Google Scholar 

  31. NIST SRM 3451—Low Temperature Seebeck Coefficient Standard (10 K to 390 K) (2011).

  32. N.D. Lowhorn, W. Wong-Ng, Z.Q. Lu, J. Martin, J.M.L. Green, E.L. Thomas, J.E. Bonevich, N.R. Dilley, and J. Sharp, J. Mater. Res. 26, 1983 (2011).

    Article  CAS  Google Scholar 

  33. D.G. Cahill, K.E. Goodson, and A. Majumdar, J. Heat Transf.-Trans. ASME. 124, 223 (2002).

    Article  CAS  Google Scholar 

  34. M. Maqsood, M. Arshad, and M. Zafarullah, Supercond. Sci. Technol. 9, 321 (1996).

    Article  CAS  Google Scholar 

  35. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, J. Appl. Phys. 32, 1679 (1961).

    Article  CAS  Google Scholar 

  36. H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford University Press, New York, 2nd ed. (1959), p. 101.

  37. L.M. Clark and R.E. Taylor, J. Appl. Phys. 46, 714 (1975).

    Article  Google Scholar 

  38. R.D. Cowan, J. Appl. Phys. 34, 926 (1963).

    Article  CAS  Google Scholar 

  39. ASTM Designation E 1461, 933 (1992).

  40. E.S.R. Gopal, Specific Heats at Low Temperatures (New York: Plenum, 1996), p. 9.

    Google Scholar 

  41. J.A. Koski, Proceedings of the 8th Symposium of Thermophysical Properties, Vol. II, 94 (1981).

  42. R.C. Heckman, Thermal Conductivity 14, eds. P.G. Klemens, and T.K. Chu. Plenum, New York, 491 (1974).

  43. J.A. Cape and G.W. Lehman, J. Appl. Phys. 34, 1909 (1963).

    Article  Google Scholar 

  44. H. Wang, W.D. Porter, H. Böttner, J. König, L. Chen, S.Q. Bai, T.M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J. Sharp, J. Lo, H. Kleinke and L. Kiss, J. Electron. Mater. (2013). doi:10.1007/s11664-012-2396-8.

Download references

Acknowledgements

The authors would like to thank the International Energy Agency under the Implementing Agreement for Advanced Materials for Transportation for supporting this work and the assistant secretary for Energy Efficiency and Renewable Energy of the Department of Energy and the Propulsion Materials Program under the Vehicle Technologies Program. We would like to acknowledge support from all participating institutions and Oak Ridge National Laboratory managed by UT-Battelle LLC under contract DE-AC05000OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Porter, W.D., Böttner, H. et al. Transport Properties of Bulk Thermoelectrics: An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat, and Thermal Conductivity. J. Electron. Mater. 42, 1073–1084 (2013). https://doi.org/10.1007/s11664-013-2516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2516-0

Keywords

Navigation