Skip to main content
Log in

Electrical Properties and Scaling Behavior of MWCNT–Soda Lime Silica Glass

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Multiwall carbon nanotube (MWCNT)–soda lime silica glass composites were prepared by the direct mixing method. The dielectric properties of the composites were studied to explore the effect of MWCNT content on the conduction and relaxation mechanisms in such composites. A gradual increase in the direct-current (dc) conductivity σ dc was observed up to 7 wt.% MWCNT, with a sharp increase in σ dc for the 10 wt.% sample. Such behavior was related to the increase of internanotube connections. The correlation between σ dc and the nanotube loading p followed the fluctuation-induced tunneling (FIT) model, which can be described by the equation, lnσ dc ∝ p −1/3. The alternating-current (ac) conductivity exhibited two distinct regimes: (i) a low-frequency plateau and (ii) a high-frequency dispersion regime. The switchover frequency between the two regimes indicated the conductivity relaxation. The onset frequency shifted to higher frequencies with increasing MWCNT content, which was related to connectivity improvement. Investigating the universality of the ac conductivity of these composites, it was found that the data obtained followed a Rolling scaling model. The obtained master curve revealed that the conductivity relaxation can be considered a temperature-independent process. The frequency dependence of the ac conductivity dielectric constant followed the intercluster polarization model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Ajayan and J.M. Tour, Nature 447, 1066 (2007).

    Article  CAS  Google Scholar 

  2. K. Kobashi, T. Villmow, T. Andres, L. H¨außler, and P. Pötschke, Smart Mater. Struct. 18, 035008 (2009).

    Article  Google Scholar 

  3. M.J. Andrade, A. Weibel, C. Laurent, S. Roth, C. Estourne`s, and Al. Peigney, Scripta Mater. 61, 988 (2009).

    Article  Google Scholar 

  4. S. Stehlik, J. Orava, T. Kohoutek, T. Wagner, M. Frumar, V. Zima, T. Hara, Y. Matsui, K. Ueda, and M. Pumera, J. Solid State Chem. 183, 144 (2010).

    Article  CAS  Google Scholar 

  5. S.A. Curran, J. Talla, S. Dias, D. Zhang, D. Carroll, and D. Birx, J. Appl. Phys. 105, 073711 (2009).

    Article  Google Scholar 

  6. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, and T. Thio, Nature (London) 382, 54 (1996).

    Article  CAS  Google Scholar 

  7. G.Ya. Slepyan, S.A. Maksimenko, L. Lakhtakia, O. Yevtushenko, and A.V. Gusakov, Phys. Rev. B 60, 17136 (1999).

    Article  CAS  Google Scholar 

  8. S. Fujita and A. Suzuki, J. Appl. Phys 107, 013711 (2010).

    Article  Google Scholar 

  9. N.F.A. Zainal, A.A. Azira, S.F. Nik, and M. Rusop, Nanosci. Nanotechnol. 1136, 750 (2009).

    CAS  Google Scholar 

  10. G.D. Seidel and D.C. Lagoudas, J. Compos. Mater. 43, 917 (2009).

    Article  CAS  Google Scholar 

  11. L. Chang, K. Friedrich, L. Ye, and P. Toro, J. Mater. Sci. 44, 4003 (2009).

    Article  CAS  Google Scholar 

  12. M. Chunying, S. Xiangqian, S. Zhou, C. Lei, and X. Zhiwei, Polymer-Plastics Technol. Eng. 49, 1172 (2010).

    Article  Google Scholar 

  13. N. Grossiord, J. Loos, O. Regev, and C.E. Koning, Chem. Mater. 18, 1089 (2006).

    Article  CAS  Google Scholar 

  14. X.Y. Gong, J. Liu, S. Baskaran, R.D. Voise, and J.S. Young, Chem. Mater. 12, 1049 (2000).

    Article  CAS  Google Scholar 

  15. J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, and A.H. Windle, Polymer 44, 5893 (2003).

    Article  CAS  Google Scholar 

  16. N. Mott, Philos. Mag. 19, 835 (1969).

    Article  CAS  Google Scholar 

  17. R. Murphy, J.N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R.C. Barklie, and W.J. Blau, J. Phys. Chem. B 106, 3087 (2002).

    Article  CAS  Google Scholar 

  18. B. McCarthy, J.N. Coleman, S.A. Curran, A.B. Dalton, A.P. Davey, Z. Konya, A. Fonseca, J.B. Nagy, and W.J. Blau, J. Mater. Sci. Lett. 19, 2239 (2000).

    Article  CAS  Google Scholar 

  19. B.E. Kilbride, J.N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, and W.J. Blau, J. Appl. Phys. 92, 4024 (2002).

    Article  CAS  Google Scholar 

  20. P. Sheng, E.K. Sichel, and J.I. Gittleman, Phys. Rev. Lett. 40, 1197 (1978).

    Article  CAS  Google Scholar 

  21. P.G. Bruce, Solid State Ionics 15, 247 (1985).

    Article  CAS  Google Scholar 

  22. V. Bobnar, P. Lunkenheimer, J. Henberger, A. Loidl, F. Lichtenberg, and J. Mannhart, Phys. Rev. Lett. 65, 155115 (2002).

    Google Scholar 

  23. A.K. Jonscher, Nature 253, 717 (1975).

    Article  CAS  Google Scholar 

  24. D.P. Almond and C.R. Bowen, Phys. Rev. Lett. 92, 15 (2004).

    Article  Google Scholar 

  25. R. Murugaraj, G. Govindaraj, and D. George, Mater. Lett. 57, 1656 (2003).

    Article  CAS  Google Scholar 

  26. A.K. Jonscher, Nature 267, 673 (1997).

    Article  Google Scholar 

  27. D.P. Almond and B. Vainas, J. Phys.: Condens. Matter 11, 9081 (1999).

    Article  CAS  Google Scholar 

  28. R. Bouamrane and D.P. Almond, J. Phys.: Condens. Matter 15, 4089 (2003).

    Article  CAS  Google Scholar 

  29. C.R. Bowen and D.P. Almond, Mater. Sci. Technol. 22, 719 (2006).

    Article  CAS  Google Scholar 

  30. M. Jaiswal, C.S.S. Sangeeth, W. Wang, Y.P. Sun, and R. Menon, J. Nanosci. Nanotechnol. 9, 6533 (2009).

    Article  CAS  Google Scholar 

  31. C.S.S. Sangeeth, M. Jaiswal and R. Menon, J. Phys.: Condens. Matter. 21, 072101 (2009).

    Google Scholar 

  32. P. Dutta, S. Biswas, M. Ghosh, S.K. De, and S. Chatterjee, Synth. Met. 122, 455 (2001).

    Article  CAS  Google Scholar 

  33. S. Summerfield, Philos. Mag. B 52, 9 (1985).

    Article  Google Scholar 

  34. B. Roling, A. Happe, K. Funke, and M.D. Ingram, Phys. Rev. Lett. 78, 2160 (1997).

    Article  CAS  Google Scholar 

  35. S.A. Saafan, Physica B 403, 2049 (2008).

    Article  CAS  Google Scholar 

  36. P. Maass, M. Meyer, and A. Bunde, Phys. Rev. B51, 8164 (1995).

    Google Scholar 

  37. A.A. Ali and M.H. Shaaban, Bull. Mater. Sci. 34, 491 (2011).

    Article  CAS  Google Scholar 

  38. P. Subbalakshmi and N. Veeraiah, Mater. Lett. 56, 880 (2002).

    Article  CAS  Google Scholar 

  39. M. Prashant Kumar, T. Sankarappa, and S. Kumar, J. Alloys Comp. 464, 393 (2008).

    Article  Google Scholar 

  40. R.S. Kumar and K. Hariharan, Mater. Chem. Phys. 60, 28 (1999).

    Article  Google Scholar 

  41. P. Bergo, W.M. Pontuschka, J.M. Prison, C.C. Motta, and J.R. Martinelli, J. Non-Cryst. Solids 348, 84 (2004).

    Article  CAS  Google Scholar 

  42. Y. Song, T.W. Noh, S.-I. Lee, and J.R. Gaines, Phys. Rev. B 33, 904 (1986).

    Article  CAS  Google Scholar 

  43. C.S. Yoon and S.I. Lee, Phys. Rev. B 42, 4594 (1990).

    Article  Google Scholar 

  44. Y.P. Mamunya, V.V. Levchenko, A. Rybak, G. Boiteux, E.V. Lebedev, J. Ulanski, and G. Seytre, J. Non-Cryst. Solids 56, 635 (2010).

    Article  Google Scholar 

  45. D.L. Sidebottom, J. Phys.: Condens. Matter 15, S1585 (2003).

    Article  CAS  Google Scholar 

  46. P. Syam Prasad, B.V. Raghavaiah, R. Balaji Rao, C. Laxmikanth, and N. Veeraiah, Solid State Commun. 132, 235 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Shaaban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaaban, M.H., Ali, A.A. Electrical Properties and Scaling Behavior of MWCNT–Soda Lime Silica Glass. J. Electron. Mater. 42, 1047–1054 (2013). https://doi.org/10.1007/s11664-013-2512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2512-4

Keywords

Navigation