Skip to main content
Log in

Effect of Composition on Thermoelectric Properties of Polycrystalline CrSi2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ingots with compositions CrSi2−x (with 0 < x < 0.1) were synthesized by vacuum arc melting followed by uniaxial hot pressing for densification. This paper reports the temperature and composition dependence of the electrical resistivity, Seebeck coefficient, and thermal conductivity of CrSi2−x samples in the temperature range of 300 K to 800 K. The silicon-deficient samples exhibited substantial reductions in resistivity and Seebeck coefficient over the measured temperature range due to the formation of metallic secondary CrSi phase embedded in the CrSi2 matrix phase. The thermal conductivity was seen to exhibit a U-shaped curve with respect to x, exhibiting a minimum value at the composition of x = 0.04. However, the limit of the homogeneity range of CrSi2 suppresses any further decrease of the lattice thermal conductivity. As a consequence, the maximum figure of merit of ZT = 0.1 is obtained at 650 K for CrSi1.98.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, eds., Thermoelectric Handbook: Macro to Nano (Boca Raton, FL: CRC, 2006).

    Google Scholar 

  2. M.I. Fedorov, J. Thermoelectr. 2, 51 (2009).

    Google Scholar 

  3. T. Dasgupta, J. Etourneau, B. Chevalier, S.F. Matar, and A.M. Umarji, J. Appl. Phys. 103, 113516 (2008).

    Article  Google Scholar 

  4. I. Nishida, J. Mater. Sci. 7, 1119 (1972).

    Article  CAS  Google Scholar 

  5. I. Nishida and T. Sakata, J. Phys. Chem. Solids 39, 499 (1978).

    Article  CAS  Google Scholar 

  6. D. Shinoda, S. Asanabe, and Y. Sasaki, J. Phys. Soc. Jpn. 19, 269 (1964).

    Article  CAS  Google Scholar 

  7. L.D. Dudkin and E.S. Kuznetsova, Poroshkovaya Metallurgiya 12, 20 (1962).

    Google Scholar 

  8. A.B. Filonov, I.E. Tralle, N.N. Dorozhkin, D.B. Migas, V.L. Shaposhnikov, G.V. Petrov, V.M. Anishichik, and V.E. Borisenko, Phys. Status Solidi B 186, 209 (1994).

    Article  CAS  Google Scholar 

  9. L.F. Mattheiss, Phys. Rev. B 43, 1863 (1991).

    Article  CAS  Google Scholar 

  10. L.F. Mattheiss, Phys. Rev. B 43, 12549 (1991).

    Article  CAS  Google Scholar 

  11. M.C. Bost and J.E. Mahan, J. Appl. Phys. 83, 839 (1988).

    Article  Google Scholar 

  12. H. Okamoto, J. Phase Equilib. 22, 593 (2001).

    CAS  Google Scholar 

  13. V.S. Neshpor, Inzh.-Fiz. Zh. 15, 321 (1968).

    CAS  Google Scholar 

  14. B.K. Voromov, L.D. Dudkin, N.I. Kiryuchina, and N.N. Trusova, Poroshkovaya Metallurgiya 49, 73 (1967).

    Google Scholar 

  15. V. Ponnambalam, S. Lindey, N.S. Hickman, and T.M. Tritt, Rev. Sci. Instrum. 77, 073904 (2006).

    Article  Google Scholar 

  16. S. Perumal (Ph.D Thesis, Indian Institute of Science, Bangalore, 2013).

  17. J. Pan, L.T. Zhang, and J.S. Wu, Scripta Mater. 56, 245 (2007).

    Article  CAS  Google Scholar 

  18. J. Pan, L.T. Zhang, and J.S. Wu, Scripta Mater. 56, 257 (2007).

    Article  CAS  Google Scholar 

  19. S. Perumal, S. Gorsse, U. Ail, B. Chevalier, R. Decourt, and A.M. Umarji, J. Mater. Sci. 48, 227 (2013).

    Article  CAS  Google Scholar 

  20. H.J. Goldsmid and J.W. Sharp, J. Electron. Mater. 28, 869 (1996).

    Article  Google Scholar 

  21. S. Gorsse, P. Bellanger, Y. Brechet, E. Sellier, A. Umarji, U. Ail, and R. Decourt, Acta Mater. 59, 7425 (2011).

    Article  CAS  Google Scholar 

  22. S. Gorsse, P. Bauer Pereira, R. Decourt, and E. Sellier, Chem. Mater. 22, 988 (2010).

    Article  CAS  Google Scholar 

  23. S. Wang and N. Mingo, Appl. Phys. Lett. 94, 203109 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gorsse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perumal, S., Gorsse, S., Ail, U. et al. Effect of Composition on Thermoelectric Properties of Polycrystalline CrSi2 . J. Electron. Mater. 42, 1042–1046 (2013). https://doi.org/10.1007/s11664-013-2510-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2510-6

Keywords

Navigation