Skip to main content

Cluster and Thickness Dependence of Ferromagnetism in Nickel In Situ-Doped Amorphous AlN Thin Films

Abstract

We report on magneto-optical investigations of Ni-doped amorphous AlN (a-AlN) thin films. The a-AlN was grown by radiofrequency (rf) sputtering on Si (0001) substrates at low temperature and doped with Ni at fixed concentrations with different a-AlN layer thicknesses. As-grown a-AlN:Ni layers were annealed up to 900°C for 5 min and 15 min time duration in nitrogen ambient at atmospheric pressure. Each sample was characterized by the magneto-optical Kerr effect (MOKE) in both polar and longitudinal geometries. Only the 65-nm-thick a-AlN:Ni layers showed linear enhancement of magnetization after thermal treatment up to 900°C, indicating the presence of a critical a-AlN:Ni layer thickness supporting the formation of magnetic domains. No measurable MOKE signal was observed in the longitudinal geometry for any tested samples with different thicknesses. This observation confirms that the easy magnetization axis in a-AlN:Ni layers is out of plane due to the strong magnetic anisotropy observed in polar MOKE geometry. The morphology of as-grown and annealed a-AlN:Ni films was characterized by atomic force microscopy (AFM), magnetic force microscopy (MFM), and scanning electron microscopy (SEM) and revealed the existence of nanoclusters. The size distribution of nanoclusters was studied as a function of annealing time and temperature, and the results correlate well with those obtained from the MOKE measurements.

This is a preview of subscription content, access via your institution.

References

  1. V. Avrutin, N. Izyumskaya, Ü. ÖzgÜr, D.J. Silversmith, and H. Morkoc, Proc. IEEE 98, 1288 (2010).

    Article  CAS  Google Scholar 

  2. T. Dietl, Nat. Mater. 9, 965 (2010).

    Article  CAS  Google Scholar 

  3. K.Y. Ko, Z.H. Barber, and M.G. Blamire, J. Appl. Phys. 100, 083905 (2006).

    Article  Google Scholar 

  4. D. Kumar, J. Antifakos, M.G. Blamire, and Z.H. Barber, Appl. Phys. Lett. 84, 5004 (2004).

    Article  CAS  Google Scholar 

  5. H. Li, H.Q. Bao, B. Song, W.J. Wang, X.L. Chen, L.J. He, and W.X. Yuan, Phys. B 403, 4096 (2008).

    Article  CAS  Google Scholar 

  6. Fan-Yong Ran, M. Subramanian, M. Tanemura, Y. Hayashi, and T. Hihara, Appl. Phys. Lett. 95, 112111 (2009).

    Article  Google Scholar 

  7. X.D. Gao, E.Y. Jiang, H.H. Liu, W.B. Mi, Z.Q. Li, P. Wu, and H.L. Bai, Appl. Surf. Sci. 253, 5431 (2007).

    Article  CAS  Google Scholar 

  8. T. Sato, Y. Endo, Y. Shiratsuchi, and M. Yamamoto, J. Magn. Magn. Mater. 310, e735 (2007).

    Article  CAS  Google Scholar 

  9. D. Pan, J.K. Jian, A. Ablat, J. Li, Y.F. Sun, and R. Wu, J. Appl. Phys. 112, 053911 (2012).

    Article  Google Scholar 

  10. T. Kaneyoshi, Introduction to Amorphous Magnets (Nagoya University, 1992).

  11. A. Fert, Rev. Mod. Phys. 80, 1517 (2008).

    Article  CAS  Google Scholar 

  12. G.P. Das, B.K. Rao, P. Jena, and Y. Kawazoe, Comput. Mater. Sci. 36, 84 (2006).

    Article  CAS  Google Scholar 

  13. S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner, and J.D. Budai, Mater. Sci. Eng., R 40, 137 (2003).

    Article  Google Scholar 

  14. W.M. Jadwisienczak, H. Tanaka, M. Kordesch, A. Khan, S. Kaya, and V. Vuppuluri, Mater. Res. Soc. Symp. Proc. 1202, 1202-I05-06 (2010).

  15. W.M. Jadwisienczak, H. Tanaka, G. Chen, M. Kordesch, and A. Khan, Mater. Res. Soc. Symp. Proc. 1290. doi:10.1557/opl.2011.16 (2011).

  16. H. Tanaka (M.S. thesis, Ohio University, Athens, OH, 2008).

  17. A. Baldan, J. Mater. Sci. 37, 2379 (2002).

    Article  CAS  Google Scholar 

  18. V. Ivanov, T. Aminov, V. Novotortsev, and V. Kalinnikov, Russ. Chem. Bull. Int. 53, 2357 (2004).

    Article  CAS  Google Scholar 

  19. J. Hong, Phys. Rev. B. 74, 172408 (2006).

    Article  Google Scholar 

  20. H. Wang, X. Jiao, and D. Chen, J. Phys. Chem. C 112, 18793 (2008).

    CAS  Google Scholar 

  21. D. Zanghi, C.M. Teodorescu, F. Petroff, H. Fischer, C. Bellouard, C. Clerc, C. Pélissier, and A. Traverse, J. Appl. Phys. 90, 12 (2001).

    Article  Google Scholar 

  22. M.P. Morales, C.J. Serna, F. Bødker, and S. Mørup, J. Phys. Condens. Matter. 9, 5461 (1997).

    Article  CAS  Google Scholar 

  23. M.P. Morales, C. de Julián, J.M. González, and C.J. Serna, J. Mater. Res. 9, 135 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tanaka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tanaka, H., Jadwisienczak, W.M., Kaya, S. et al. Cluster and Thickness Dependence of Ferromagnetism in Nickel In Situ-Doped Amorphous AlN Thin Films. J. Electron. Mater. 42, 844–848 (2013). https://doi.org/10.1007/s11664-013-2493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2493-3

Keywords

  • Amorphous
  • AlN
  • transition metal
  • nanoclusters
  • magneto-optics