Skip to main content
Log in

Nanograin Effects on the Thermoelectric Properties of Poly-Si Nanowires

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript


In this work we perform a theoretical analysis of the thermoelectric performance of polycrystalline Si nanowires (NWs) by considering both electron and phonon transport. The simulations are calibrated with experimental data from monocrystalline and polycrystalline structures. We show that heavily doped polycrystalline NW structures with grain size below 100 nm might offer an alternative approach to achieve simultaneous thermal conductivity reduction and power factor improvements through improvements in the Seebeck coefficient. We find that deviations from the homogeneity of the channel and/or reduction in the diameter may provide strong reduction in the thermal conductivity. Interestingly, our calculations show that the Seebeck coefficient and consequently the power factor can be improved significantly once the polycrystalline geometry is properly optimized, while avoiding strong reduction in the electrical conductivity. In such a way, ZT values even higher than the ones reported for monocrystalline Si NWs can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.-K. Yu, W.A. Goddard Jr., and J.R. Heath, Nature 451, 168 (2008).

    Article  CAS  Google Scholar 

  2. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163–168 (2008).

    Article  CAS  Google Scholar 

  3. C.J. Vineis, A. Shakouri, A. Majumdar, and M.C. Kanatzidis, Adv. Mater. 22, 3970–3980 (2010).

    Article  CAS  Google Scholar 

  4. K. Nielsch, J. Bachmann, J. Kimling, and H. Boettner, Adv. Energy Mater. 1, 713–731 (2011).

    Article  CAS  Google Scholar 

  5. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  CAS  Google Scholar 

  6. N. Neophytou and H. Kosina, Phys. Rev. B 83, 245305 (2011).

    Article  Google Scholar 

  7. X. Zianni, Appl. Phys. Lett. 97, 233106 (2010).

    Article  Google Scholar 

  8. X. Zianni, AIP Conf. Proc. 1449, 21 (2012). doi:10.1063/1.4731487.

  9. X. Zianni, J. Solid State Chem. 193, 53 (2012).

    Article  CAS  Google Scholar 

  10. R. Kim and M. Lundstrom, J. Appl. Phys. 110, 034511 (2011).

    Article  Google Scholar 

  11. D. Narducci, E. Selezneva, G. Cerofolini, E. Romano, R. Tonini, and G. Ottaviani, MRS Symp. Proc., 2010, 1314, mrsf10-1314-ll05-16.

  12. D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19 (2012).

    Article  CAS  Google Scholar 

  13. T.J. Scheidemantel, C.A. Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Phys. Rev. B 68, 125210 (2003).

    Article  Google Scholar 

  14. N. Neophytou and H. Kosina, Phys. Rev. B 84, 085313 (2011).

    Article  Google Scholar 

  15. R. Kim, S. Datta, and M.S. Lundstrom, J. Appl. Phys. 105, 034506 (2009).

    Article  Google Scholar 

  16. M. Lundstrom, Fundamentals of Carrier Transport (New York: Cambridge University Press, 2000).

    Book  Google Scholar 

  17. H. Kosina and G.K. Grujin, Solid State Electron. 42, 331 (1998).

    Article  CAS  Google Scholar 

  18. A.T. Ramu, L.E. Cassels, N.H. Hackman, H. Lu, J.M.O. Zide, and J.E. Bowels, J. Appl. Phys. 107, 083707 (2010).

    Article  Google Scholar 

  19. C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).

    Article  CAS  Google Scholar 

  20., “Physical Properties of Semiconductors”.

  21. G. Masetti, M. Severi, and S. Solmi, IEEE Trans. Electron. Dev. 30, 764 (1983).

    Article  Google Scholar 

  22. P. Chantrenne, J.L. Barrat, X. Blase, and J.D. Gale, J. Appl. Phys. 97, 104318 (2005).

    Article  Google Scholar 

  23. J.W. Orton and M.J. Powell, Rep. Prog. Phys. 43, 1263 (1980).

    Article  Google Scholar 

  24. F.V. Farmakis, J. Brini, G. Kamarinos, C.T. Angelis, C.A. Dimitriadis, and M. Miyasaka, IEEE Trans. Electron. Dev. 48, 701 (2001).

    Article  CAS  Google Scholar 

  25. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225–2230 (2011).

    Article  CAS  Google Scholar 

  26. J. Jerhot and J. Vlcek, Thin Solid Films 92, 259 (1982).

    Article  CAS  Google Scholar 

  27. M. Lundstrom, Electron. Dev. Lett. 22, 293–295 (2001).

    Article  CAS  Google Scholar 

  28. D. Narducci, E. Selezneva, G. Cerofolini, E. Romano, R. Tonini, and G. Ottaviani, Proceedings of the 8th European Conference on Thermoelectrics (ECT2010) (2010), p. 141–146.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to X. Zianni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neophytou, N., Zianni, X., Ferri, M. et al. Nanograin Effects on the Thermoelectric Properties of Poly-Si Nanowires. J. Electron. Mater. 42, 2393–2401 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: