Skip to main content
Log in

Measurement of Thermoelectric Properties of Single Semiconductor Nanowires

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have measured the thermopower and the thermal conductivity of individual silicon and indium arsenide nanowires (NWs). In this study, we evaluate a self-heating method to determine the thermal conductivity λ. Experimental validation of this method was performed on highly n-doped Si NWs with diameters ranging from 20 nm to 80 nm. The Si NWs exhibited electrical resistivity of \(\rho = (8\pm4)\, \hbox{m}\Upomega\,\hbox{cm}\) at room temperature and Seebeck coefficient of −(250 ± 100) μV/K. The thermal conductivity of Si NWs measured using the proposed method is very similar to previously reported values; e.g., for Si NWs with 50 nm diameter, λ = 23 W/(m K) was obtained. Using the same method, we investigated InAs NWs with diameter of 100 nm and resistivities of \(\rho = (25\pm5)\, \hbox{m}\Upomega\,\hbox{cm}\) at room temperature. Thermal conductivity of λ = 1.8 W/(m K) was obtained, which is about 20 to 30 times smaller than in bulk InAs. We analyzed the accuracy of the self-heating method by means of analytical and numerical solution of the one-dimensional (1-D) heat diffusion equation taking various loss channels into account. For our NWs suspended from the substrate with low-impedance contacts the relative error can be estimated to be ≤25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008). doi:10.1038/nature06381.

    Article  CAS  Google Scholar 

  2. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008). doi:10.1038/nature06458.

    Article  CAS  Google Scholar 

  3. P. Pichanusakorn and P. Bandaru, Mater. Sci. Eng. R 67, 19 (2010). doi:10.1016/j.mser.2009.10.001.

    Article  Google Scholar 

  4. N. Mingo, Appl. Phys. Lett. 84, 2652 (2004). doi:10.1063/1.1695629.

    Article  CAS  Google Scholar 

  5. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993). doi:10.1103/PhysRevB.47.16631.

    Article  CAS  Google Scholar 

  6. C.H. Lee, G.C. Yi, Y.M. Zuev, and P. Kim, Appl. Phys. Lett. 94, 022106 (2009). doi:10.1063/1.3067868.

    Article  Google Scholar 

  7. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, A. and Majumdar, J. Heat Transf. 125, 881 (2003). doi:10.1115/1.1597619.

    Article  CAS  Google Scholar 

  8. A. Mavrokefalos, M.T. Pettes, F. Zhou, and L. Shi, Rev. Sci. Instrum. 78, 034901 (2007). doi:10.1063/1.2712894.

    Article  Google Scholar 

  9. D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990). doi:10.1063/1.1141498.

    Article  CAS  Google Scholar 

  10. L. Lu, W. Yi, and D.L. Zhang, Rev. Sci. Instrum. 72, 2996 (2001). doi:10.1063/1.1378340.

    Article  CAS  Google Scholar 

  11. F. Voelklein, H. Reith, T.W. Cornelius, M. Rauber, and R. Neumann, Nanotechnology 20, 325706 (2009). http://stacks.iop.org/0957-4484/20/i=32/a=325706.

  12. S. Dhara, H.S. Solanki, Pawan R.A., V. Singh, S. Sengupta, B.A. Chalke, A. Dhar, M. Gokhale, A. Bhattacharya, and M.M. Deshmukh, Phys. Rev. B 84, 121307 (2011). doi:10.1103/PhysRevB.84.121307.

    Article  Google Scholar 

  13. J.A. Martinez, P.P. Provencio, S.T. Picraux, J.P. Sullivan, and B.S. Swartzentruber, J. Appl. Phys. 110, 074317 (2011). doi:10.1063/1.3647575.

    Article  Google Scholar 

  14. H. Schmid, M.T. Bjork, J. Knoch, S. Karg, H. Riel, and W. Riess, Nano Lett. 9, 173 (2008). doi:10.1021/nl802739v.

    Article  Google Scholar 

  15. M.T. Bjork, H. Schmid, C.D. Bessire, K.E. Moselund, H. Ghoneim, S. Karg, E. Lortscher, and H. Riel, Appl. Phys. Lett. 97, 163501 (2010). doi:10.1063/1.3499365.

    Article  Google Scholar 

  16. M.T. Bjork, H. Schmid, C.M. Breslin, L. Gignac, and H. Riel, J. Cryst. Growth 344, 31 (2012). doi:10.1016/j.jcrysgro.2012.01.052.

    Article  Google Scholar 

  17. L. Gignac, unpublished transmission electron microscopy results. IBM Watson Research Center.

  18. L. Weber and E. Gmelin, Appl. Phys. A 53, 136 (1991). doi:10.1007/BF00323873.

    Article  Google Scholar 

  19. M.T. Bjork, H. Schmid, J. Knoch, H. Riel, and W. Riess, Nat. Nano 4, 103 (2009). doi:10.1038/nnano.2008.400.

    Article  Google Scholar 

  20. F. Salleh, K. Asai, A. Ishida, and H. Ikeda, Appl. Phys. Express 2, 071203 (2009). doi:10.1143/APEX.2.071203.

    Article  Google Scholar 

  21. O. Yamashita and N. Sadatomi, Jpn. J. Appl. Phys. 38, 6394 (1999). doi:10.1143/JJAP.38.6394.

    Article  CAS  Google Scholar 

  22. K. Tsao and C. Sah, Solid-State Electron. 19, 949 (1976). doi:10.1016/0038-1101(76)90108-8.

    Article  CAS  Google Scholar 

  23. Y.S. Touloukian, R.W. Powell, C.Y. Ho, and P.G. Klemens, eds., Thermophysical Properties of Matter, vol. 1 (New York: IFI/Plenum 1970), p. 1292

  24. F. Menges, H. Riel, A. Stemmer, and B. Gotsmann, Nano Lett. 12, 596 (2012). doi:10.1021/nl203169t.

    Article  CAS  Google Scholar 

  25. J.H. Lienhard V. and J.H. Lienhard IV, ed., A Heat Transfer Textbook, 4th ed. (Englewood Cliffs, NJ: Prentice-Hall, 2012). http://web.mit.edu/lienhard/www/ahtt.html.

  26. S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 2909 (2009). doi:10.1021/nl901208v.

  27. E.T. Swartz and R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989). doi:10.1103/RevModPhys.61.605.

    Article  Google Scholar 

  28. K. Etessam-Yazdani, M. Asheghi, and H.F. Hamann, ASME Conf. Proc. 2007, 349 (2007). doi:10.1115/HT2007-32868.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karg, S., Mensch, P., Gotsmann, B. et al. Measurement of Thermoelectric Properties of Single Semiconductor Nanowires. J. Electron. Mater. 42, 2409–2414 (2013). https://doi.org/10.1007/s11664-012-2409-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2409-7

Keywords

Navigation