Skip to main content
Log in

Creation of Yb2O3 Nanoprecipitates Through an Oxidation Process in Bulk Yb-Filled Skutterudites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An approach to introduce in situ nanoprecipitates into bulk filled skutterudites is developed through controlling the oxidation process of the fillers. Yb0.3Co4Sb12 is selected as the base material, and prolonged oxidation at high temperatures in sealed quartz tubes under a low pressure of oxygen leads to the formation of Yb2O3 nanoinclusions. Transmission electron microscopy shows that the Yb2O3 nanoprecipitates are created within the skutterudite crystal grains through an internal oxidation mechanism. With increased time of oxidation, the amount of Yb2O3 nanoprecipitates is increased and the nanoprecipitates are more uniformly distributed in the matrix. For the samples oxidized for 10 days, the lattice thermal conductivity is reduced by about 19% at 850 K compared with the Yb0.3Co4Sb12 matrix. The reduction in the lattice thermal conductivity originates from additional phonon scattering by the Yb2O3 nanoprecipitates, leading to a maximum ZT of 1.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Uher, Semiconductors and Semimetals, vol. 69, ed. T.M. Trit (New York: Academic), pp. 139–253.

  2. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  3. X. Shi, S.Q. Bai, L. Xi, J. Yang, W. Zhang, and L. Chen, J. Mater. Res. 26, 1745 (2011).

    Article  CAS  Google Scholar 

  4. X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  CAS  Google Scholar 

  5. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).

    Article  Google Scholar 

  6. G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, and M. Zehetbauer, Intermetallics 18, 394 (2010).

    Article  CAS  Google Scholar 

  7. G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  CAS  Google Scholar 

  8. D.T. Morelli, G.P. Meisner, B.X. Chen, S.Q. Hu, and C. Uher, Phys. Rev. B 56, 7376 (1997).

    Article  CAS  Google Scholar 

  9. G.S. Nolas, J.L. Cohn, and G.A. Slack, Phys. Rev. B 58, 164 (1998).

    Article  CAS  Google Scholar 

  10. A. Grytsiv, P. Rogl, S. Berger, C. Paul, E. Bauer, C. Godart, B. Ni, M.M. Abd-Elmeguid, A. Saccone, R. Ferro, and D. Kaczorowski, Phys. Rev. B 66, 0944411 (2002).

    Article  Google Scholar 

  11. Y.Z. Pei, S.Q. Bai, X.Y. Zhao, W. Zhang, and L.D. Chen, Solid State Sci. 10, 1422 (2008).

    Article  CAS  Google Scholar 

  12. V.L. Kuznetsov, L.A. Kuznetsova, and D.M. Rowe, J. Phys. Condens. Matter 29, 5035 (2003).

    Article  Google Scholar 

  13. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).

    Article  CAS  Google Scholar 

  14. M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, and E. Muller, J. Appl. Phys. 95, 4852 (2004).

    Article  CAS  Google Scholar 

  15. Y.Z. Pei, L.D. Chen, W. Zhang, X. Shi, S.Q. Bai, X.Y. Zhao, Z.G. Mei, and X.Y. Li, Appl. Phys. Lett. 89, 221107 (2006).

    Article  Google Scholar 

  16. J. Yang, Q. Hao, H. Wang, Y.C. Lan, Q.Y. He, A. Minnich, D.Z. Wang, J.A. Harriman, V.M. Varki, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Phys. Rev. B 80, 115329 (2009).

    Article  Google Scholar 

  17. L.D. Chen, X. Chen, and S.Q. Bai, J. Inorg. Mater. 25, 561 (2010).

    Article  CAS  Google Scholar 

  18. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  19. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

  20. Z. Xiong, X.Y. Huang, X.H. Chen, J. Ding, and L.D. Chen, Scr. Mater. 62, 93 (2010).

    Article  CAS  Google Scholar 

  21. X.Y. Zhao, X. Shi, L.D. Chen, W. Zhang, S.Q. Bai, Y.Z. Pei, X.Y. Li, and T. Goto, Appl. Phys. Lett. 89, 092121 (2006).

    Article  Google Scholar 

  22. H. Li, X.F. Tang, Q.J. Zhang, and C. Uher, Appl. Phys. Lett. 93, 252109 (2008).

    Article  Google Scholar 

  23. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  CAS  Google Scholar 

  24. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).

    Article  CAS  Google Scholar 

  25. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, ed. A. Zunger, R. Hull, R.M. Osgood, and H. Sakaki (Berlin: Springer, 2001), pp. 1–288.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, J., Gu, H., Qiu, P. et al. Creation of Yb2O3 Nanoprecipitates Through an Oxidation Process in Bulk Yb-Filled Skutterudites. J. Electron. Mater. 42, 382–388 (2013). https://doi.org/10.1007/s11664-012-2370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2370-5

Keywords

Navigation