Journal of Electronic Materials

, Volume 42, Issue 3, pp 372–381 | Cite as

Thermal Cycling, Mechanical Degradation, and the Effective Figure of Merit of a Thermoelectric Module

  • M. T. Barako
  • W. Park
  • A. M. Marconnet
  • M. Asheghi
  • K. E. Goodson


Thermoelectric modules experience performance reduction and mechanical failure due to thermomechanical stresses induced by thermal cycling. The present study subjects a thermoelectric module to thermal cycling and evaluates the evolution of its thermoelectric performance through measurements of the thermoelectric figure of merit, ZT, and its individual components. The Seebeck coefficient and thermal conductivity are measured using steady-state infrared microscopy, and the electrical conductivity and ZT are evaluated using the Harman technique. These properties are tracked over many cycles until device failure after 45,000 thermal cycles. The mechanical failure of the TE module is analyzed using high-resolution infrared microscopy and scanning electron microscopy. A reduction in electrical conductivity is the primary mechanism of performance reduction and is likely associated with defects observed during cycling. The effective figure of merit is reduced by 20% through 40,000 cycles and drops by 97% at 45,000 cycles. These results quantify the effect of thermal cycling on a commercial TE module and provide insight into the packaging of a complete TE module for reliable operation.


Thermoelectric module infrared microscopy thermal cycling figure of merit Harman method 



Cross-sectional area, m2


Electrical current, A


Thermal conductivity, W m−1 K−1


Length of TE element, mm


Heat flow, W


Heat flux, W m−2


Temperature, °C


Voltage, V


Position along direction of conductive heat flow, mm


Thermoelectric figure of merit

Greek symbols


Seebeck coefficient, V K−1


Electrical resistivity, Ω m


Electrical conductivity, Ω−1 m−1



At 0 cycles


Electrical component of voltage


Open-circuit voltage


Peak-to-peak voltage


Reference layer



TE leg

Single thermoelectric leg element


Thermoelectrical component of voltage


Total voltage


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Zorbas, E. Hatzikraniotis, and K. Paraskevopoulos, 5th European Conf. of Thermoelectrics, Odessa, Ukraine (2007).Google Scholar
  2. 2.
    J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).CrossRefGoogle Scholar
  3. 3.
    K. Zorbas, E. Hatzikraniotis, K. M. Paraskevopoulos, and Th. Kyratsi, AIP Conf. Proceedings, vol. 1203, pp. 1137–1142 (2010)Google Scholar
  4. 4.
    E. Hatzikraniotis, International Congress on Advances in Applied Physics and Materials Science, Antalya, Turkey, pp. 287–289 (2012)Google Scholar
  5. 5.
    S. LeBlanc, Y. Gao, and K. E. Goodson, Proc. of IMECE, Boston, MA, pp. 1–7 (2008).Google Scholar
  6. 6.
    E.W. Miller, T.J. Hendricks, and R.B. Peterson, J. Electron. Mater. 38, 1206 (2009).CrossRefGoogle Scholar
  7. 7.
    I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, Nat. Nanotechnol. 4, 235 (2009).CrossRefGoogle Scholar
  8. 8.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  9. 9.
    Y. Yang, X.-J. Wei, and J. Liu, J. Phys. D Appl. Phys. 40, 5790 (2007).CrossRefGoogle Scholar
  10. 10.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  11. 11.
    D.L. Medlin and G.J. Snyder, Curr. Opin. Colloid Interface Sci. 14, 226 (2009).CrossRefGoogle Scholar
  12. 12.
    E. Hatzikraniotis, K.T. Zorbas, I. Samaras, T. Kyratsi, and K.M. Paraskevopoulos, J. Electron. Mater. 39, 2112 (2009).CrossRefGoogle Scholar
  13. 13.
    Y. Gao, A.M. Marconnet, M.A. Panzer, S. LeBlanc, S. Dogbe, Y. Ezzahri, A. Shakouri, and K.E. Goodson, J. Electron. Mater. 39, 1456 (2010).CrossRefGoogle Scholar
  14. 14.
    Y. Hori, D. Kusano, T. Ito, and K. Izumi, Eighteenth International Conference on Thermoelectrics (2000).Google Scholar
  15. 15.
    T. C. Harman, J. H. Carn, and M. J. Logan, J. Appl. Phys. 30 (1959).Google Scholar
  16. 16.
    D.M. Rowe and G. Min, J. Power Sources 73, 193 (1998).CrossRefGoogle Scholar
  17. 17.
    Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 92, 101910 (2008).CrossRefGoogle Scholar
  18. 18.
    R.G. de Villoria, N. Yamamoto, A. Miravete, and B.L. Wardle, Nanotechnology 22, 185502 (2011).CrossRefGoogle Scholar
  19. 19.
    W. Park, M.T. Barako, A.M. Marconnet, M. Asheghi, and K.E. Goodson, Proc. of ITHERM, San Diego, CA (2012).Google Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • M. T. Barako
    • 1
  • W. Park
    • 1
  • A. M. Marconnet
    • 1
  • M. Asheghi
    • 1
  • K. E. Goodson
    • 1
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations