Journal of Electronic Materials

, Volume 42, Issue 7, pp 1647–1651 | Cite as

Characterization of Nonstoichiometric Ti1+xSe2 Prepared by the Method of Modulated Elemental Reactants

  • Daniel B. Moore
  • Luke Sitts
  • Matthew J. Stolt
  • Matt Beekman
  • David C. Johnson
Article

The method of modulated elemental reactants (MER) is used to prepare the layered compound Ti1+xSe2. Using a thin-film precursor prepared by sequentially depositing elemental titanium and selenium by physical vapor deposition, the binary compound is readily formed by short-duration annealing at 350°C. x-Ray diffraction indicates that TiSe2 layers in the film are highly oriented with the c-axis of the layers perpendicular to the substrate. Temperature-dependent electrical resistivity and Hall coefficient measurements for the MER-prepared specimen reveal temperature dependence that is distinct from crystalline stoichiometric TiSe2 in bulk form. The room-temperature Seebeck coefficient was measured to be −134 μV/K, which is opposite in sign and significantly larger in magnitude than stoichiometric crystalline TiSe2, suggesting that carrier transport in the disordered film is markedly different from the bulk crystalline material.

Keywords

TiSe2 thermoelectric turbostratic disorder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Wilson and A.D. Yoffe, Adv. Phys. 18, 193 (1969).CrossRefGoogle Scholar
  2. 2.
    M. Noh, C.D. Johnson, M.D. Hornbostel, J. Thiel, and D.C. Johnson, Chem. Mater. 8, 1625 (1996).CrossRefGoogle Scholar
  3. 3.
    C. Heideman, N. Nguyen, J. Hanni, Q. Lin, S. Duncombe, D.C. Johnson, and P. Zschack, J. Solid State Chem. 181, 1701 (2008).CrossRefGoogle Scholar
  4. 4.
    Q. Lin, M. Smeller, C.L. Heideman, P. Zschack, M. Koyano, M.D. Anderson, R. Kykyneshi, D.A. Keszler, I.M. Anderson, and D.C. Johnson, Chem. Mater. 22, 1002 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Beekman, G. Cogburn, C. Heideman, S. Rouvimov, P. Zschack, W. Neumann, and D.C. Johnson, J. Electron. Mater. 41, 1476 (2012).CrossRefGoogle Scholar
  6. 6.
    C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, Science 315, 351 (2007).CrossRefGoogle Scholar
  7. 7.
    N.T. Nguyen, P.A. Berseth, Q. Lin, C. Chiritescu, D.G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M.D. Anderson, I.M. Anderson, and D.C. Johnson, Chem. Mater. 22, 2750 (2010).CrossRefGoogle Scholar
  8. 8.
    M.M. Traum, G. Margaritondo, N.V. Smith, J.E. Rowe, and F.J. Di Salvo, Phys. Rev. B 17, 1836 (1978).CrossRefGoogle Scholar
  9. 9.
    J.C.E. Rasch, T. Stemmler, B. Müller, L. Dudy, and R. Manzke, Phys. Rev. Lett. 101, 237602 (2008).CrossRefGoogle Scholar
  10. 10.
    F.J. Di Salvo, D.E. Moncton, and J.V. Waszczak, Phys. Rev. B 14, 4321 (1976).CrossRefGoogle Scholar
  11. 11.
    Y. Hirota, K. Ichiyama, N. Hosoi, Y. Oikawa, Y. Miyahara, V. A. Kulbachinskii, and H. Oszki, Proceedings of the 21st International Conference on Thermoelectrics (Piscataway: IEEE, 2002), p. 159.Google Scholar
  12. 12.
    F. Gascoin, N. Raghavendra, E. Guilmeau, and Y. Bréard, J. Alloys Compd. 121, 521 (2012).Google Scholar
  13. 13.
    C. Riekel, J. Solid State Chem. 17, 389 (1976).CrossRefGoogle Scholar
  14. 14.
    T. Hirota, Y. Ueda, and K. Kosuge, Mater. Res. Bull. 23, 1641 (1988).CrossRefGoogle Scholar
  15. 15.
    F. Grønvold and F.J. Langmyhr, Acta Chem. Scan. 15, 1949 (1961).CrossRefGoogle Scholar
  16. 16.
    G. Li, W.Z. Hu, D. Qian, D. Hsieh, M.Z. Hasan, E. Morosan, R.J. Cava, and N.L. Wang, Phys. Rev. Lett. 99, 027404 (2007).CrossRefGoogle Scholar
  17. 17.
    Q. Lin, S. Tepfer, C. Heideman, C. Mortensen, N. Nguyen, P. Zschack, M. Beekman, and D.C. Johnson, J. Mater. Res. 26, 1866 (2011).CrossRefGoogle Scholar
  18. 18.
    T.C. Ozawa and S.J. Kang, J. Appl. Cryst. 37, 679 (2004).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Daniel B. Moore
    • 1
  • Luke Sitts
    • 1
  • Matthew J. Stolt
    • 1
  • Matt Beekman
    • 1
    • 2
  • David C. Johnson
    • 1
  1. 1.Department of ChemistryUniversity of OregonEugeneUSA
  2. 2.Department of Natural SciencesOregon Institute of TechnologyKlamath FallsUSA

Personalised recommendations