Journal of Electronic Materials

, Volume 42, Issue 7, pp 1622–1627 | Cite as

Lower Thermal Conductivity and Higher Thermoelectric Performance of Fe-Substituted and Ce, Yb Double-Filled p-Type Skutterudites

  • Sedat Ballikaya
  • Neslihan Uzar
  • Saffettin Yildirim
  • Hang Chi
  • Xianli Su
  • Gangjian Tan
  • Xinfeng Tang
  • Ctirad Uher
Article

Abstract

Substituting Fe on Co sites is an effective way to produce p-type skutterudite compounds as well as to reduce the thermal conductivity of skutterudites. In this work, we investigated thermoelectric properties of Fe-substituted and Ce + Yb double-filled CexYbyFezCo4−zSb12 (x = y = 0.5, z = 2.0 to 3.25 nominal) skutterudite compounds by studying the Seebeck coefficient, electrical conductivity, thermal conductivity, and Hall coefficient over a broad range of temperatures. All samples were prepared by using the traditional method of melting–annealing and spark plasma sintering. The signs of the Hall coefficient and Seebeck coefficient indicate that all samples are p-type conductors. Electrical conductivity increases with increasing Fe content. The temperature dependence of electrical conductivity indicates that a transition from the extrinsic to the intrinsic regime of conduction depends on the amount of Fe substituted for Co. The temperature dependence of mobility reflects the dominance of acoustic phonon scattering at temperatures above ambient. Except for Ce0.5Yb0.5Fe3.25Co0.75Sb12, the thermal conductivity increases with increasing Fe content, reaching the maximum value of 2.23 W/m K at room temperature for Ce0.5Yb0.5Fe3CoSb12. A high power factor (27 μW/K2 cm) combined with a rather low thermal conductivity for Ce0.5Yb0.5Fe3.25Co0.75Sb12 (nominal) lead to a dimensionless figure of merit ZT = 1.0 at 750 K for this compound, one of the highest ZT values achieved in p-type skutterudite compounds prepared by the traditional method of melting–annealing and spark plasma sintering.

Keywords

Thermoelectric properties p-type skutterudites Ce, Yb double filled thermal conductivity Seebeck coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  2. 2.
    D.M. Rowe, eds., Thermoelectric Handbook Macro to Nano (Boca Raton: CRC, Taylor & Francis, 2006).Google Scholar
  3. 3.
    G.A. Slack, CRC Handbook of Thermoelectricity, ed. D.M. Rowe (Boca Raton: CRC, 1995), p. 407.Google Scholar
  4. 4.
    C. Uher, Recent Trends in Thermoelectric Materials Research I, Semiconductors and Semimetals, ed. T.M. Tritt (San Diego: Academic, vol. 69, 2001), pp. 139–253.Google Scholar
  5. 5.
    J.R. Sootsman, D.Y. Chung, and M. Kanatzadis, Angew. Chem. Int. Ed. 48, 8616 (2009).CrossRefGoogle Scholar
  6. 6.
    G.S. Nolas, D.T. Morelli, and T.M. Tritt, Annu. Rev. Mater. Sci. 29, 89 (1999).CrossRefGoogle Scholar
  7. 7.
    W. Jeitschko and D.J. Brown, Acta Cryst. B 33, 3401 (1977).CrossRefGoogle Scholar
  8. 8.
    G.A. Slack and V.G. Tsoukala, J. Appl. Phys. 76, 1665 (1994).CrossRefGoogle Scholar
  9. 9.
    D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995).CrossRefGoogle Scholar
  10. 10.
    G.S. Nolas, J.L. Cohn, and G.A. Slack, Phys. Rev. B 58, 164 (1998).CrossRefGoogle Scholar
  11. 11.
    D.T. Morelli, G.P. Meisner, B.X. Chen, S.Q. Hu, and C. Uher, Phys. Rev. B 56, 7376 (1997).CrossRefGoogle Scholar
  12. 12.
    G.S. Nolas, M. Kaeser, M. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
  13. 13.
    L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).CrossRefGoogle Scholar
  14. 14.
    X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006).CrossRefGoogle Scholar
  15. 15.
    M. Puyet, B. Lenoir, A. Dauscher, P. Weisbecker, and S.J. Clarke, J. Solid State Chem. 177, 2138 (2004).CrossRefGoogle Scholar
  16. 16.
    S. Ballikaya, G. Wang, K. Sun, and C. Uher, J. Electron. Mater. 40, 570 (2011).CrossRefGoogle Scholar
  17. 17.
    X. Shi, H. Kong, C.-P. Li, C. Uher, J. Yang, R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2007).CrossRefGoogle Scholar
  18. 18.
    X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  19. 19.
    H. Li, X. Tang, Q. Zhang, and C. Uher, Appl. Phys. Lett. 93, 252109 (2009).CrossRefGoogle Scholar
  20. 20.
    S. Ballikaya, N. Uzar, S. Yildirim, J. R. Salvador, and C. Uher, J. Solid State Chem. (2012). doi:10.1016/j.jssc.2012.03.029.
  21. 21.
    C. Uher, C.-P. Li, and S. Ballikaya, J. Electron. Mater. 39, 2122 (2010).CrossRefGoogle Scholar
  22. 22.
    J.L. Mi, X.B. Zhao, T.J. Zhu, and J. Ma, J. Alloys Compd. 452, 225 (2008).CrossRefGoogle Scholar
  23. 23.
    X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, Chem. Mater. 23, 2948 (2011).CrossRefGoogle Scholar
  24. 24.
    G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).CrossRefGoogle Scholar
  25. 25.
    G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, and M. Zehetbauer, Intermetallics 19, 546 (2011).CrossRefGoogle Scholar
  26. 26.
    G. Rogl, D. Setman, E. Shafler, J. Horky, M. Kerber, M. Zehetbauer, M. Falmbigl, P. Rogl, E. Royanian, and E. Bauer, Acta Mater. 60, 2146 (2012).CrossRefGoogle Scholar
  27. 27.
    K. Yang, H. Cheng, H.H. Hng, J. Ma, J.L. Mi, X.B. Zhao, T.J. Zhu, and Y.B. Zhang, J. Alloys Compd. 467, 528 (2009).CrossRefGoogle Scholar
  28. 28.
    C. Zhou, D. Morelli, X. Zhou, G. Wang, and C. Uher, Intermetallics 19, 1390 (2011).CrossRefGoogle Scholar
  29. 29.
    R. Liu, P. Qiu, X. Chen, X. Huang, and L. Chen, J. Mater. Res. 26, 1813 (2011).CrossRefGoogle Scholar
  30. 30.
    R. Liu, J. Yang, X. Chen, X. Shi, L. Chen, and C. Uher, Intermetallics 19, 1747 (2011).CrossRefGoogle Scholar
  31. 31.
    J. Zhou, Q. Jie, L. Wu, I. Dimitrov, Q. Li, and X. Shi, J. Mater. Res. 26, 1842 (2011).CrossRefGoogle Scholar
  32. 32.
    J.R. Salvador, J. Yang, X. Shi, H. Wang, A.A. Wereszczak, H. Kong, and C. Uher, Philos. Mag. 89, 1517 (2009).CrossRefGoogle Scholar
  33. 33.
    P.F. Qui, R.H. Liu, J. Yang, X. Shi, X.Y. Huang, W. Zhang, L.D. Chen, J. Yang, and D.J. Singh, J. Appl. Phys. 111, 023705 (2012).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Sedat Ballikaya
    • 1
    • 2
  • Neslihan Uzar
    • 1
  • Saffettin Yildirim
    • 1
  • Hang Chi
    • 2
  • Xianli Su
    • 3
  • Gangjian Tan
    • 3
  • Xinfeng Tang
    • 3
  • Ctirad Uher
    • 2
  1. 1.Department of PhysicsUniversity of IstanbulIstanbulTurkey
  2. 2.Department of PhysicsUniversity of MichiganAnn ArborUSA
  3. 3.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations