Skip to main content
Log in

Grain-Size-Dependent Thermoelectric Properties of SrTiO3 3D Superlattice Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric (TE) performance of SrTiO3 (STO) 3D superlattice ceramics with 2D electron gas grain boundaries (GBs) was theoretically investigated. The grain size dependence of the power factor, lattice thermal conductivity, and ZT value were calculated by using Boltzmann transport equations. It was found that nanostructured STO ceramics with smaller grain size have larger ZT value. This is because the quantum confinement effect, energy filtering effect, and interfacial phonon scattering at GBs all become stronger with decreasing grain size, resulting in higher power factor and lower lattice thermal conductivity. These findings will aid the design of nanostructured oxide ceramics with high TE performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, Ann. Rev. Mater. Res. 40, 363 (2010).

    Article  CAS  Google Scholar 

  2. Y.F. Wang, K. Fujinami, R.Z. Zhang, C.L. Wan, N. Wang, Y.S. Ba, and K. Koumoto, Appl. Phys. Express 3, 031101 (2010).

    Article  Google Scholar 

  3. A. Soni, Z. Yanyuan, Y. Ligen, M.K.K. Aik, M.S. Dresselhaus, and Q. Xiong, Nano Lett. 12, 1203 (2012)..

    Google Scholar 

  4. C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).

    Article  CAS  Google Scholar 

  5. W. Kim, R. Wang, and A. Majumdar, Nano Today 2, 40 (2007).

    Article  Google Scholar 

  6. S. Wang and N. Mingo, Phys. Rev. B 79, 115316 (2009).

    Article  Google Scholar 

  7. J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B 79, 115311 (2009).

    Article  Google Scholar 

  8. R.-z. Zhang, C.-l. Wang, J.-c. Li, and K. Koumoto, J. Am. Ceram. Soc. 93, 1677 (2010).

    CAS  Google Scholar 

  9. M. Dresselhaus, G. Chen, M. Tang, R.G. Yang, H. Lee, D.-z. Wang, Z.-F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  CAS  Google Scholar 

  10. Y. Mune, H. Ohta, K. Koumoto, T. Mizoguchi, and Y. Ikuhara, Appl. Phys. Lett. 91, 192105 (2007).

    Article  Google Scholar 

  11. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Nat. Mater. 6, 129 (2007).

    Article  CAS  Google Scholar 

  12. W. Wunderlich, H. Ohta, and K. Koumoto, Phys. B 404, 2202 (2009).

    Article  CAS  Google Scholar 

  13. N. Shanthi and D.D. Sarma, Phys. Rev. B 57, 2153 (1998).

    Article  CAS  Google Scholar 

  14. R.Z. Zhang, C.L. Wang, J.C. Li, W.B. Su, J.L. Zhang, M.L. Zhao, J.A. Liu, Y.F. Zhang, and L.M. Mei, Solid State Sci. 12, 1168 (2010).

    Article  CAS  Google Scholar 

  15. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).

    Article  Google Scholar 

  16. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, Sd. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys.: Condens. Matter. 21, 395502 (2009).

    Article  Google Scholar 

  17. H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloy. Compd. 392, 306 (2005).

    Article  CAS  Google Scholar 

  18. T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, Phys. Rev. B 63, 113104 (2001).

    Article  Google Scholar 

  19. M. Yamamoto, H. Ohta, and K. Koumoto, Appl. Phys. Lett. 90, 072101 (2007).

    Article  Google Scholar 

  20. M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E.C. Muller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, Adv. Funct. Mater. 14, 1189 (2004).

    Article  CAS  Google Scholar 

  21. H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloy. Compd. 350, 292 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-zhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Rz., Koumoto, K. Grain-Size-Dependent Thermoelectric Properties of SrTiO3 3D Superlattice Ceramics. J. Electron. Mater. 42, 1568–1572 (2013). https://doi.org/10.1007/s11664-012-2324-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2324-y

Keywords

Navigation