Skip to main content
Log in

Measurement of Thermoelectric Properties of Phenylacetylene-Capped Silicon Nanoparticles and Their Potential in Fabrication of Thermoelectric Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Silicon is a highly attractive material for the fabrication of thermoelectric materials. Nanostructured silicon materials, such as silicon nanowires (SiNWs), show great potential as they show low thermal conductivities due to efficient phonon scattering but similar electrical conductivities to bulk silicon. Silicon nanoparticles (SiNPs) are easier to synthesize and show a greater number of surface defects, which suggests that more efficient phonon scattering can be achieved, but these materials also show low electrical conductivity due to defects within the materials unless pressed at high temperatures (1100°C). Conjugated capping layers show the potential to bridge these defects, giving higher conductivity without the need for this process. Phenylacetylene-capped SiNPs are synthesized via the micelle reduction method and pressed into a pellet. Measurements of the electrical conductivity, Seebeck coefficient, and thermal conductivity were taken. The results show that the material produced from these particles shows a relatively high Seebeck coefficient (3228.84 μV K−1) which would have a positive effect on the figure of merit (ZT). A respectable electrical conductivity (18.1 S m−1) and a low thermal conductivity (0.1 W m−1 K−1) confirm the potential of using conjugated molecules as a way of cross-linking between nanoparticles in a bulk material fabricated from SiNPs. These results give a figure of merit of 0.57, which is comparable to better established thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Buriak, Chem. Rev. 102, 1271 (2002).

    Article  CAS  Google Scholar 

  2. Z. Kang, Y. Liu, and S.-T. Lee, Nanoscale 3, 777 (2011).

    Article  CAS  Google Scholar 

  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).

    Article  CAS  Google Scholar 

  4. M. Rosso-Vasic, E. Spruijt, B. van Lagen, L. De Cola, and H. Zuilhof, Small 4, 1835 (2008).

    Article  CAS  Google Scholar 

  5. N. O’Farrell, A. Houlton, and B.R. Horrocks, Int. J. Nanomed. 1, 451 (2006).

    Article  Google Scholar 

  6. Q. Wang, Y. Bao, X. Zhang, P.R. Coxon, U.A. Jayasooriya, and Y. Chao, Adv. Health. Mater 1, 189 (2012).

    Article  CAS  Google Scholar 

  7. J.H. Warner, A. Hoshino, K. Yamamoto, and R.D. Tilley, Nanobiophotonics and Biomedical Applications II, ed. A.N. Cartwright, M. Osiński San Jose, CA: SPIE, (2005), Vol. 5705, p. 52.

  8. Q. Wang, H. Ni, A. Pietzsch, F. Hennies, Y. Bao, and Y. Chao, J. Nanopart. Res. 13, 405 (2011).

    Article  CAS  Google Scholar 

  9. N.H. Alsharif, C.E.M. Berger, S.S. Varanasi, Y. Chao, B.R. Horrocks, and H.K. Datta, Small 5, 221 (2009).

    Article  CAS  Google Scholar 

  10. J. Ahire, Q. Wang, P.R. Coxon, G. Malhotra, R.M.D. Brydson, R. Chen, and Y. Chao, ACS Appl. Mater. Interfaces 4, 3285 (2012).

    Article  CAS  Google Scholar 

  11. Q. Wang, Y. Bao, J. Ahire, and Y. Chao, Adv. Health. Mater. 1 (2012). doi:10.1002/adhm.201200178

  12. D. Moore, S. Krishnamurthy, Y. Chao, Q. Wang, D. Brabazon, and P.J. McNally, Phys. Status Solidi A-Appl. Mater. 208, 604 (2011).

    Article  CAS  Google Scholar 

  13. K. Nishiguchi, X. Zhao, and S. Oda, J. Appl. Phys. 92, 2748 (2002).

    Article  CAS  Google Scholar 

  14. M.L. Ostraat, J.W. De Blauwe, M.L. Green, L.D. Bell, M.L. Brongersma, J. Casperson, R.C. Flagan, and H.A. Atwater, Appl. Phys. Lett. 79, 433 (2001).

    Article  CAS  Google Scholar 

  15. J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279 (2010).

    Article  CAS  Google Scholar 

  16. J.-H. Lee, G.A. Galli, and J.C. Grossman, Nano Lett. 8, 3750 (2008).

    Article  CAS  Google Scholar 

  17. A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P.D. Yang, Nature 451, 163 (2008).

    Article  CAS  Google Scholar 

  18. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard, and J.R. Heath, Nature 451, 168 (2008).

    Article  CAS  Google Scholar 

  19. K.-C. Fang, C.-I. Weng, and S.-P. Ju, Nanotechnology 17, 3909 (2006).

    Article  CAS  Google Scholar 

  20. L.H. Lie, M. Duerdin, E.M. Tuite, A. Houlton, and B.R. Horrocks, J. Electroanal. Chem. 538, 183 (2002).

    Google Scholar 

  21. L. Mangolini, E. Thimsen, and U. Kortshagen, Nano Lett. 5, 655 (2005).

    Article  CAS  Google Scholar 

  22. D. Neiner, H.W. Chiu, and S.M. Kauzlarich, J. Am. Chem. Soc. 128, 11016 (2006).

    Article  CAS  Google Scholar 

  23. J.H. Warner, A. Hoshino, K. Yamamoto, and R.D. Tilley, Angew. Chem. Int. Ed. 44, 4550 (2005).

    Article  CAS  Google Scholar 

  24. K.A. Pettigrew, Q. Liu, P.P. Power, and S.M. Kauzlarich, Chem. Mater. 15, 4005 (2003).

    Article  CAS  Google Scholar 

  25. Z.H. Khan, ApSS 255, 8874 (2009).

    CAS  Google Scholar 

  26. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J.-P. Fleurial, Adv. Funct. Mater. 19, 2445 (2009).

    Article  CAS  Google Scholar 

  27. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008).

    Article  CAS  Google Scholar 

  28. N. Saito, K. Hayashi, H. Sugimura, and O. Takai, Langmuir 19, 10632 (2003).

    Article  CAS  Google Scholar 

  29. R.K. Hiremath, B.G. Mulimani, M.K. Rabinal, and I.M. Khazi, J. Phys.: Condens. Matter 19, 446003 (2007).

    Google Scholar 

  30. R.K. Baldwin, K.A. Pettigrew, J.C. Garno, P.P. Power, G.-Y. Liu, and S.M. Kauzlarich, J. Am. Chem. Soc. 124, 1150 (2002).

    Article  CAS  Google Scholar 

  31. G. Golan, A. Axelevitch, B. Gorenstein, and V. Manevych, Microelectron. J. 37, 910 (2006).

    Article  CAS  Google Scholar 

  32. M. Bouaïcha, M. Khardani, and B. Bessaïs, Mater. Sci. Eng. C 26, 486 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Chao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashby, S.P., García-Cañadas, J., Min, G. et al. Measurement of Thermoelectric Properties of Phenylacetylene-Capped Silicon Nanoparticles and Their Potential in Fabrication of Thermoelectric Materials. J. Electron. Mater. 42, 1495–1498 (2013). https://doi.org/10.1007/s11664-012-2297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2297-x

Keywords

Navigation