Abstract
To accurately characterize the efficiency of thermoelectric materials and characterize the maximum power that they can produce, a device using micro/nanofabrication techniques has been developed, enabling all three properties included in the figure of merit, ZT, of a thermoelectric material to be measured using a single device. The fabrication and testing of the device are presented. The electrical conductivity and Seebeck coefficient of Ge/SiGe heterostructures grown by low-energy plasma-enhanced chemical vapor deposition are used for demonstration. Experimental results as a function of quantum well width are presented, demonstrating power factors up to 6.02 ± 0.05 mW m−1 K−2 at 300 K. Modeling and physical characterization demonstrate that these results are presently limited by high threading dislocation density.
Similar content being viewed by others
References
D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (New York: CRC Taylor and Francis Group, 2005).
L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
S. Cecchi, T. Etzelstorfer, E. Müller, A. Samarelli, L.F. Llin, D. Chrastina, G. Isella, J. Stangl, and D.J. Paul, J. Mater. Sci. (2012). doi:10.1007/s10853-012-6825-0..
S.A. McAuley, H. Ashraf, L. Atabo, A. Chambers, S. Hall, J. Hopkins, and G. Nicholls, J. Phys. D. 34, 2769 (2001).
H. Tsuda, M. Mori, Y. Takao, K. Eriguchi, and K. Ono, Jpn. J. Appl. Phys. 49 (2010)
D. Chrastina, S. Cecchi, J.P. Hague, F. Isa, J. Frigerio, A. Samarelli, L. Ferre-Llin, D.J. Paul, E. Mller, T. Etzelstorfer, J. Stangl, and G. Isella, Thin Solid Films (2012).
H. Zhou, G. Mills, B.K. Chong, A. Midha, L. Donaldson, and J.M.R. Weaver, J. Vac. Sci. Technol. A. 17, 2233 (1999).
P.S. Dobson, G. Mills, and J.M.R. Weaver, Rev. Sci. Instrum. 76, 054901 (2005).
J.R. Waitling and D.J. Paul, J. Appl. Phys. 110, 114508 (2011).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Samarelli, A., Llin, L.F., Zhang, Y. et al. Power Factor Characterization of Ge/SiGe Thermoelectric Superlattices at 300 K. J. Electron. Mater. 42, 1449–1453 (2013). https://doi.org/10.1007/s11664-012-2287-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-012-2287-z