Journal of Electronic Materials

, Volume 42, Issue 1, pp 21–25 | Cite as

Implantation Studies on Silicon-Doped GaN



Silicon-doped GaN layers grown by low-pressure metalorganic vapor-phase epitaxy with Si concentrations ranging from 2 × 1017 Si/cm3 to 9.2 × 1018 Si/cm3 were investigated by means of the perturbed angular correlation (PAC) technique applied to implanted 111In(Cd). An undoped GaN film is used as a reference. The Si atoms replace Ga atoms in the lattice, and silicon, being a group IV element, acts as a donor on the Ga site and contributes one extra electron to the conduction band. Hall-effect measurements confirmed that the free charge carrier density is essentially increased and of the order of the silicon concentration. PAC investigations of the annealing behavior after implantation of the 111In probes show that best recovery is achieved after annealing at 1200 K and that high silicon concentrations make GaN films more stable at high temperatures. Further, it was found that the temperature dependence of the electric field gradient is reduced by increasing Si concentrations.


Nitride semiconductor implantation annealing perturbed angular correlation 


  1. 1.
    H. Frauenfelder and R.M. Steffen, Alpha, Beta, and Gamma-Ray Spectroscopy, ed. K. Siegbahn (Amsterdam, The Netherlands: North-Holland, 1965).Google Scholar
  2. 2.
    H. Koch, Defekt-Fremdatom Wechselwirkung in den hexagonalen Metallen Rhenium und Lutetium (PhD thesis, Universität Bonn, 1992)Google Scholar
  3. 3.
    R. Valentini, Winkelkorrelationsuntersuchungen an Seltenen Erden in Halbleiter mit großer Bandlücke (PhD thesis, Universität Bonn, 2011)Google Scholar
  4. 4.
    K. Köhler, J. Wiegert, H.P. Menner, M. Maier, and L. Kirste, J. Appl. Phys. 103, 023706 (2008).CrossRefGoogle Scholar
  5. 5.
    J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (New York: Pergamon, 1985).Google Scholar
  6. 6.
    M. Forker, W. Herz, U. Hütten, R. Müßeler, J. Schmidberger, D. Simon, A. Weingarten, and S.C. Bedi, Nuclear Instrum. Methods A327, 456 (1993).Google Scholar
  7. 7.
    K. Lorenz, F. Ruske, and R. Vianden, Appl. Phys. Lett. 80, 4531 (2002).CrossRefGoogle Scholar
  8. 8.
    G. Marx, Akzeptor-Wasserstoff-Komplexe und spannungsinduzierte elektrische Feldgradienten in Silizium und Germanium (PhD thesis, Universität Bonn, 1995)Google Scholar
  9. 9.
    M. Corti, A. Gabetta, M. Fanciulli, A. Svane, and N.E. Christensen, Phys. Rev. B 67, 064416 (2003).CrossRefGoogle Scholar
  10. 10.
    S. Ruvimov, Z. Liliental-Weber, T. Suski, J.W. Ager III, J. Washburn, J. Krueger, C. Kisielowski, E.R. Weber, H. Amano, and I. Akasaki, Appl. Phys. Lett. 69, 990 (1996).CrossRefGoogle Scholar
  11. 11.
    P. Pyykkö, Phys. Rev. B 85, 24115 (2012).CrossRefGoogle Scholar
  12. 12.
    P. Keßler, K. Lorenz, and R. Vianden, Defect Diffusion Forum 311, 167 (2011).CrossRefGoogle Scholar
  13. 13.
    M.G. Ganchenkova and R.M. Nieminen, Phys. Rev. Lett. 96, 196402 (2006).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.Helmholtz-Institut für Strahlen- und KernphysikBonnGermany
  2. 2.Fraunhofer Institut für angewandte Festkörperphysik (IAF)FreiburgGermany
  3. 3.JCNS-2, PGI-4, Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations